A Novel kgd-Topological Covalent Organic Framework with Optimum Pore Size for Efficient Benzene/Cyclohexane Separation

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-20 DOI:10.1002/smll.202408742
Borui Cai, Wenhao Wu, Xiaozeng Miao, Xi Yang, Limin Duan, Daohui Lin, Kun Yang
{"title":"A Novel kgd-Topological Covalent Organic Framework with Optimum Pore Size for Efficient Benzene/Cyclohexane Separation","authors":"Borui Cai, Wenhao Wu, Xiaozeng Miao, Xi Yang, Limin Duan, Daohui Lin, Kun Yang","doi":"10.1002/smll.202408742","DOIUrl":null,"url":null,"abstract":"Separation of benzene and cyclohexane is essential for obtaining high-purity cyclohexane in the chemical industry and for resource recovery from exhaust gas, but is one of the most challenging separation processes due to their highly similar boiling points and kinetic diameters. Herein, based on the isoreticular contraction strategy, a novel covalent organic framework (i.e., HFPB-TAB-COF) with <b>kgd</b> topological structure and average pore size of 5.70 Å, between the kinetic diameters of benzene (5.60 Å) and cyclohexane (6.10 Å), is synthesized for benzene/cyclohexane separation by pore confinement effect. HFPB-TAB-COF has the highest ideal adsorbed solution theory (IAST) selectivity of 36.0 for benzene/cyclohexane separation, and can produce 0.48 mmol g<sup>−1</sup> cyclohexane with purity of +99% from 50:50 (v:v) benzene/cyclohexane mixture under dynamic condition, higher than reported separation materials. Optimizing the pore size of COFs by isoreticular contraction strategy can trigger the pore confinement effect for better meeting the separation challenge in industry.","PeriodicalId":228,"journal":{"name":"Small","volume":"99 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408742","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Separation of benzene and cyclohexane is essential for obtaining high-purity cyclohexane in the chemical industry and for resource recovery from exhaust gas, but is one of the most challenging separation processes due to their highly similar boiling points and kinetic diameters. Herein, based on the isoreticular contraction strategy, a novel covalent organic framework (i.e., HFPB-TAB-COF) with kgd topological structure and average pore size of 5.70 Å, between the kinetic diameters of benzene (5.60 Å) and cyclohexane (6.10 Å), is synthesized for benzene/cyclohexane separation by pore confinement effect. HFPB-TAB-COF has the highest ideal adsorbed solution theory (IAST) selectivity of 36.0 for benzene/cyclohexane separation, and can produce 0.48 mmol g−1 cyclohexane with purity of +99% from 50:50 (v:v) benzene/cyclohexane mixture under dynamic condition, higher than reported separation materials. Optimizing the pore size of COFs by isoreticular contraction strategy can trigger the pore confinement effect for better meeting the separation challenge in industry.

Abstract Image

一种具有最佳孔径的新型 kgd 拓扑共价有机框架,可用于高效分离苯/环己烷
苯和环己烷的分离对于化工行业获得高纯度环己烷以及从废气中回收资源至关重要,但由于它们的沸点和动力学直径非常相似,因此是最具挑战性的分离过程之一。本文基于等径收缩策略,合成了一种新型共价有机框架(即 HFPB-TAB-COF),它具有 kgd 拓扑结构,平均孔径为 5.70 Å,介于苯(5.60 Å)和环己烷(6.10 Å)的动力学直径之间,可通过孔约束效应实现苯/环己烷分离。HFPB-TAB-COF 在苯/环己烷分离方面具有最高的理想吸附溶液理论(IAST)选择性(36.0),并能在动态条件下从 50:50 (v:v) 苯/环己烷混合物中制备出纯度为 +99% 的 0.48 mmol g-1 环己烷,高于已报道的分离材料。通过等径收缩策略优化 COFs 的孔径,可以激发孔的约束效应,从而更好地应对工业中的分离挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信