Observation of Linear Resistance at Low Temperatures in Hole-Doped Degenerate Spin-Valley Semiconductors

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mallesh Baithi, Tuan Dung Nguyen, Seon Je Kim, Young-Min Kim, Dinh Loc Duong, Young Hee Lee
{"title":"Observation of Linear Resistance at Low Temperatures in Hole-Doped Degenerate Spin-Valley Semiconductors","authors":"Mallesh Baithi, Tuan Dung Nguyen, Seon Je Kim, Young-Min Kim, Dinh Loc Duong, Young Hee Lee","doi":"10.1021/acs.nanolett.4c04247","DOIUrl":null,"url":null,"abstract":"Linear resistivity–temperature (<i>R</i>–<i>T</i>) at low temperatures, referred to as strange metal (SM), is an unusual characteristic observed in strongly correlated systems. SM is often mingled with superconductivity and magnetism in various materials. Here, we report a linear <i>R</i>–<i>T</i> relation in a hole-doped, degenerate spin-valley (SV) semiconductor, V<sub>0.25</sub>W<sub>0.75</sub>Se<sub>2</sub>, with hole pockets in the valence band. SM emerges over a wide temperature range (1.8–150 K) without any apparent superconductivity down to 110 mK. This SM behavior is suppressed at low temperatures below 20 K in the presence of a magnetic field. The ansatz <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x221D;&lt;/mo&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x3B1;&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x3B3;&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;&amp;#x3BC;&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;&amp;#x3BC;&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span overflow=\"scroll\" style=\"width: 20.969em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 19.037em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.139em, 1019.04em, 3.298em, -999.997em); top: -2.554em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑅</span><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝐻<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.06em;\"></span></span><span style=\"font-family: STIXMathJax_Main;\">,</span><span style=\"font-family: STIXMathJax_Normal-italic; padding-left: 0.173em;\">𝑇<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.116em;\"></span></span><span style=\"font-family: STIXMathJax_Main;\">)</span></span><span style=\"font-family: STIXMathJax_Main; padding-left: 0.23em;\">−</span><span style=\"font-family: STIXMathJax_Normal-italic; padding-left: 0.23em;\">𝑅</span><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span style=\"font-family: STIXMathJax_Main;\">0</span><span style=\"font-family: STIXMathJax_Main;\">,</span><span style=\"font-family: STIXMathJax_Main; padding-left: 0.173em;\">0</span><span style=\"font-family: STIXMathJax_Main;\">)</span></span><span style=\"font-family: STIXMathJax_Main; padding-left: 0.344em;\">∝</span><span style=\"padding-left: 0.344em;\"><span style=\"display: inline-block; position: relative; width: 10.23em; height: 0px;\"><span style=\"position: absolute; clip: rect(2.901em, 1009.15em, 4.378em, -999.997em); top: -3.974em; left: 1.082em;\"><span><span><span><span style=\"display: inline-block; position: relative; width: 3.412em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1002.9em, 4.321em, -999.997em); top: -3.974em; left: 0em;\"><span><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝛼<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.003em;\"></span></span><span><span style=\"display: inline-block; position: relative; width: 1.082em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.51em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑘</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.571em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">B</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑇<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.116em;\"></span></span><span style=\"font-family: STIXMathJax_Main;\">)</span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.372em; left: 2.957em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main; padding-left: 0.23em;\">+</span><span style=\"padding-left: 0.23em;\"><span style=\"display: inline-block; position: relative; width: 4.605em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1004.15em, 4.378em, -999.997em); top: -3.974em; left: 0em;\"><span><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝛾<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.06em;\"></span></span><span><span style=\"display: inline-block; position: relative; width: 1.139em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.57em, 4.321em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝜇</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 0.571em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">B</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.57em, 4.321em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝜇</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 0.571em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">0</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝐻<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.06em;\"></span></span><span style=\"font-family: STIXMathJax_Main;\">)</span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.372em; left: 4.207em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.526em, 1009.15em, 3.923em, -999.997em); top: -4.94em; left: 1.082em;\"><span style=\"display: inline-block; position: relative; width: 9.151em; height: 0px;\"><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 8.866em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.23em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.514em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.741em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.026em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.31em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.537em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.821em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.048em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.332em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.56em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.844em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 3.128em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 3.355em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 3.639em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 3.866em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 4.151em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 4.435em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 4.662em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 4.946em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 5.173em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 5.457em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 5.741em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 5.969em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 6.253em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 6.48em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 6.764em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 7.048em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 7.276em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 7.56em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 7.787em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 8.071em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 8.355em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 8.582em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(2.276em, 1001.08em, 4.435em, -999.997em); top: -3.69em; left: 0em;\"><span style=\"font-family: STIXMathJax_Size1;\">√</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.684em; border-left: 0px solid; width: 0px; height: 2.191em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi><mrow><mo stretchy=\"false\">(</mo><mi>H</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></mrow><mo>−</mo><mi>R</mi><mrow><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy=\"false\">)</mo></mrow><mo>∝</mo><msqrt><mrow><msup><mrow><mrow><mo stretchy=\"false\">(</mo><mi>α</mi><msub><mrow><mi>k</mi></mrow><mrow><mi mathvariant=\"normal\">B</mi></mrow></msub><mi>T</mi><mo stretchy=\"false\">)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo stretchy=\"false\">(</mo><mi>γ</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi mathvariant=\"normal\">B</mi></mrow></msub><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>H</mi><mo stretchy=\"false\">)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></span></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><mi>R</mi><mrow><mo stretchy=\"false\">(</mo><mi>H</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></mrow><mo>−</mo><mi>R</mi><mrow><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy=\"false\">)</mo></mrow><mo>∝</mo><msqrt><mrow><msup><mrow><mrow><mo stretchy=\"false\">(</mo><mi>α</mi><msub><mrow><mi>k</mi></mrow><mrow><mi mathvariant=\"normal\">B</mi></mrow></msub><mi>T</mi><mo stretchy=\"false\">)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo stretchy=\"false\">(</mo><mi>γ</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi mathvariant=\"normal\">B</mi></mrow></msub><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>H</mi><mo stretchy=\"false\">)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></script> yields the γ/α ratio of ∼4, larger than the previous reports. The observed SM over a wide temperature range is explained by a spin–orbit coupling (SOC)-mediated SV pair with strong correlation effects, analogous to a phonon-mediated Cooper pair in superconductivity. This finding opens possible routes for understanding strange metal behavior through the interplay of strong SOC and strong Coulomb interactions.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"8 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04247","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Linear resistivity–temperature (RT) at low temperatures, referred to as strange metal (SM), is an unusual characteristic observed in strongly correlated systems. SM is often mingled with superconductivity and magnetism in various materials. Here, we report a linear RT relation in a hole-doped, degenerate spin-valley (SV) semiconductor, V0.25W0.75Se2, with hole pockets in the valence band. SM emerges over a wide temperature range (1.8–150 K) without any apparent superconductivity down to 110 mK. This SM behavior is suppressed at low temperatures below 20 K in the presence of a magnetic field. The ansatz R(H,T)R(0,0)(αkBT)2+(γμBμ0H)2 yields the γ/α ratio of ∼4, larger than the previous reports. The observed SM over a wide temperature range is explained by a spin–orbit coupling (SOC)-mediated SV pair with strong correlation effects, analogous to a phonon-mediated Cooper pair in superconductivity. This finding opens possible routes for understanding strange metal behavior through the interplay of strong SOC and strong Coulomb interactions.

Abstract Image

在掺杂空穴的退化自旋谷半导体中观察低温下的线性电阻
低温下的线性电阻率-温度(R-T),即奇异金属(SM),是在强相关系统中观察到的一种不寻常特性。在各种材料中,奇异金属常常与超导性和磁性混杂在一起。在这里,我们报告了一种掺杂空穴的退化自旋谷(SV)半导体 V0.25W0.75Se2(价带中有空穴)中的线性 R-T 关系。SM 出现在很宽的温度范围(1.8-150 K)内,在 110 mK 以下没有任何明显的超导现象。在磁场作用下,这种 SM 行为在低于 20 K 的低温下被抑制。公式 𝑅(𝐻,𝑇)-𝑅(0,0)∝(𝛼𝑘B𝑇)2+(𝛾𝜇B0𝐻)2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√R(H、T)-R(0,0)∝(αkBT)2+(γμBμ0H)2R(H,T)-R(0,0)∝(αkBT)2+(γμBμ0H)2得到的γ/α比值为∼4,大于之前的报告。在很宽的温度范围内观察到的SM是由自旋轨道耦合(SOC)介导的具有强相关效应的SV对解释的,类似于超导中声子介导的库珀对。这一发现为通过强自旋轨道耦合和强库仑相互作用的相互作用来理解奇异金属行为开辟了可能的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信