Streaming Instabilities in Accreting Protoplanetary Disks: A Parameter Study

Shiang-Chih Wang and Min-Kai Lin
{"title":"Streaming Instabilities in Accreting Protoplanetary Disks: A Parameter Study","authors":"Shiang-Chih Wang and Min-Kai Lin","doi":"10.3847/1538-4357/ad862d","DOIUrl":null,"url":null,"abstract":"The streaming instability (SI) is currently the leading candidate for triggering planetesimal formation in protoplanetary disks. Recently, a novel variation, the “azimuthal-drift” streaming instability (AdSI), was discovered in disks exhibiting laminar gas accretion. Unlike the classical SI, the AdSI does not require pressure gradients and can concentrate dust even at low abundances. We extend previous simulations of the AdSI to explore the impact of dust abundance, accretion-flow strength, pressure gradients, and grain size. For a dimensionless accretion-flow strength αM = 0.1 and particle Stokes number St = 0.1, we find the AdSI produces dust filaments for initial dust-to-gas ratios as low as ϵ = 0.01. For ϵ ≳ 1, maximum dust-to-gas ratios of order 100 are attained, which can be expected to undergo gravitational collapse. Furthermore, even in systems dominated by the classical SI, an accretion flow drives filament formation, without which the disk remains in a state of small-scale turbulence. Our results suggest that an underlying accretion flow facilitates dust concentration and may thus promote planetesimal formation.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad862d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The streaming instability (SI) is currently the leading candidate for triggering planetesimal formation in protoplanetary disks. Recently, a novel variation, the “azimuthal-drift” streaming instability (AdSI), was discovered in disks exhibiting laminar gas accretion. Unlike the classical SI, the AdSI does not require pressure gradients and can concentrate dust even at low abundances. We extend previous simulations of the AdSI to explore the impact of dust abundance, accretion-flow strength, pressure gradients, and grain size. For a dimensionless accretion-flow strength αM = 0.1 and particle Stokes number St = 0.1, we find the AdSI produces dust filaments for initial dust-to-gas ratios as low as ϵ = 0.01. For ϵ ≳ 1, maximum dust-to-gas ratios of order 100 are attained, which can be expected to undergo gravitational collapse. Furthermore, even in systems dominated by the classical SI, an accretion flow drives filament formation, without which the disk remains in a state of small-scale turbulence. Our results suggest that an underlying accretion flow facilitates dust concentration and may thus promote planetesimal formation.
增殖原行星盘中的流不稳定性:参数研究
流不稳定性(SI)是目前引发原行星盘中行星形成的主要原因。最近,在表现出层状气体吸积的星盘中发现了一种新的变化,即 "方位漂移 "流不稳定性(AdSI)。与经典的流不稳定性不同,流不稳定性不需要压力梯度,即使在丰度较低的情况下也能聚集尘埃。我们扩展了之前对 AdSI 的模拟,以探索尘埃丰度、吸积流强度、压力梯度和粒度的影响。对于无量纲吸积流强度 αM = 0.1 和粒子斯托克斯数 St = 0.1,我们发现 AdSI 在初始尘气比低至 ϵ = 0.01 时会产生尘丝。当ϵ ≳1时,尘气比最大可达100,预计会发生引力坍缩。此外,即使在以经典 SI 为主导的系统中,吸积流也会驱动丝状体的形成,如果没有丝状体的形成,圆盘仍会处于小尺度湍流状态。我们的研究结果表明,潜在的吸积流有利于尘埃聚集,从而可能促进行星的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信