{"title":"An ultra-low fouling electrochemical mocularly imprinted sensor based on size exclusion effect for highly selective pentachlorophenol detection","authors":"Chen Cheng, Xiaoyu Zhu, Xingao Qin, Jinzhu Zhang, Meng Liu, Ying Wang","doi":"10.1016/j.snb.2024.136974","DOIUrl":null,"url":null,"abstract":"Pentachlorophenol (PCP) is considered as a highly toxic pollutant in water environment. However, detecting low concentrations of PCP precisely hindered by various interferences is still a tough challenge. In this study, an antifouling electrochemical molecularly imprinted (E-MIP) sensor harnessing the size exclusion effect was specifically designed for highly selective detection of PCP in water. The distinctive interaction between the size-selective poly-hydroxyproline helical peptide (PHHP) and poly(<em>o</em>-phenylenediamine) (p(o-PD)) molecularly imprinted films, strongly reduced non-specific adsorption. In the face of high concentrations of organic matters and ions, the reported sensor exhibited robust antifouling capabilities that it preserved 90 % of the initial signal. In addition, the limit of detection (LOD) reached an exceptionally low level of 1.13 nM (S/N = 3), spanning a wide linear range from 1 nM to 10 μM, and the sensor showed high selectivity with an impressive imprinted factor of 12.01 for PCP. Meanwhile, it owned great repeatability and reproducibility, long-term stability for PCP detection within 25 days, and decent reusability (retaining 92.33 % of its senor performance after 5 cycles), which ensured its excellent feasibility for determination of PCP in complex water samples with co-existing interferences due to acceptable recoveries. The development of this strategy provides an innovative platform for PCP quantification in real water samples, underscoring its potential as a key tool in managing PCP at relevant sites.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"99 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2024.136974","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pentachlorophenol (PCP) is considered as a highly toxic pollutant in water environment. However, detecting low concentrations of PCP precisely hindered by various interferences is still a tough challenge. In this study, an antifouling electrochemical molecularly imprinted (E-MIP) sensor harnessing the size exclusion effect was specifically designed for highly selective detection of PCP in water. The distinctive interaction between the size-selective poly-hydroxyproline helical peptide (PHHP) and poly(o-phenylenediamine) (p(o-PD)) molecularly imprinted films, strongly reduced non-specific adsorption. In the face of high concentrations of organic matters and ions, the reported sensor exhibited robust antifouling capabilities that it preserved 90 % of the initial signal. In addition, the limit of detection (LOD) reached an exceptionally low level of 1.13 nM (S/N = 3), spanning a wide linear range from 1 nM to 10 μM, and the sensor showed high selectivity with an impressive imprinted factor of 12.01 for PCP. Meanwhile, it owned great repeatability and reproducibility, long-term stability for PCP detection within 25 days, and decent reusability (retaining 92.33 % of its senor performance after 5 cycles), which ensured its excellent feasibility for determination of PCP in complex water samples with co-existing interferences due to acceptable recoveries. The development of this strategy provides an innovative platform for PCP quantification in real water samples, underscoring its potential as a key tool in managing PCP at relevant sites.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.