Hiroyuki Nagashima, Justin Shayne, Kan Jiang, Franziska Petermann, Aleksandra Pękowska, Yuka Kanno, John J. O’Shea
{"title":"Remodeling of Il4-Il13-Il5 locus underlies selective gene expression","authors":"Hiroyuki Nagashima, Justin Shayne, Kan Jiang, Franziska Petermann, Aleksandra Pękowska, Yuka Kanno, John J. O’Shea","doi":"10.1038/s41590-024-02007-4","DOIUrl":null,"url":null,"abstract":"The type 2 cytokines, interleukin (IL)-4, IL-13 and IL-5 reside within a multigene cluster. Both innate (ILC2) and adaptive T helper 2 (TH2) lymphocytes secrete type 2 cytokines with diverse production spectra. Using transcription factor footprint and chromatin accessibility, we systemically cataloged regulatory elements (REs) denoted as SHS-I/II, KHS-I/II, +6.5kbIl13, 5HS-I(a, b, c, d, e), 5HS-II and 5HS-III(a, b, c) across the extended Il4-Il13-Il5 locus in mice. Physical proximities among REs were coordinately remodeled in three-dimensional space after cell activation, leading to divergent compartmentalization of Il4, Il13 and Il5 with varied combinations of REs. Deletions of REs revealed no single RE solely accounted for selective regulation of a given cytokine in vivo. Instead, individual RE differentially contribute to proper genomic positioning of REs and target genes. RE deletions resulted in context-dependent dysregulation of cytokine expression and immune response in tissue. Thus, signal-dependent remodeling of three-dimensional configuration underlies divergent cytokine outputs from the type 2 loci. O’Shea and colleagues examine the three-dimensional chromatin architecture of the type 2 cytokine locus and how it differs between innate ILC2 cells and adaptive TH2 lymphocytes.","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":"25 12","pages":"2220-2233"},"PeriodicalIF":27.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41590-024-02007-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The type 2 cytokines, interleukin (IL)-4, IL-13 and IL-5 reside within a multigene cluster. Both innate (ILC2) and adaptive T helper 2 (TH2) lymphocytes secrete type 2 cytokines with diverse production spectra. Using transcription factor footprint and chromatin accessibility, we systemically cataloged regulatory elements (REs) denoted as SHS-I/II, KHS-I/II, +6.5kbIl13, 5HS-I(a, b, c, d, e), 5HS-II and 5HS-III(a, b, c) across the extended Il4-Il13-Il5 locus in mice. Physical proximities among REs were coordinately remodeled in three-dimensional space after cell activation, leading to divergent compartmentalization of Il4, Il13 and Il5 with varied combinations of REs. Deletions of REs revealed no single RE solely accounted for selective regulation of a given cytokine in vivo. Instead, individual RE differentially contribute to proper genomic positioning of REs and target genes. RE deletions resulted in context-dependent dysregulation of cytokine expression and immune response in tissue. Thus, signal-dependent remodeling of three-dimensional configuration underlies divergent cytokine outputs from the type 2 loci. O’Shea and colleagues examine the three-dimensional chromatin architecture of the type 2 cytokine locus and how it differs between innate ILC2 cells and adaptive TH2 lymphocytes.
期刊介绍:
Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.