Zi Piao Ye , Jian Qiang He , Ting An , Shi Hua Duan , Hua Jing Kang , Fu Biao Wang
{"title":"Influences of residual stomatal conductance on the intrinsic water use efficiency of two C3 and two C4 species","authors":"Zi Piao Ye , Jian Qiang He , Ting An , Shi Hua Duan , Hua Jing Kang , Fu Biao Wang","doi":"10.1016/j.agwat.2024.109136","DOIUrl":null,"url":null,"abstract":"<div><div>Intrinsic water use efficiency (<em>WUE</em><sub>i</sub>) is a critical parameter that encapsulates the equilibrium between carbon assimilation and the concomitant water expenditure. Enhancing the <em>WUE</em><sub>i</sub> of crops is not only instrumental in bolstering their resilience to drought but also enables higher carbon fixation efficiency under conditions of scarce water resources. Improving the <em>WUE</em><sub>i</sub> of crop varieties has become a major goal because water has become a critical limiting factor in crop productivity within the context of global change. The <em>WUE</em><sub>i</sub>, traditionally calculated by <span><math><mrow><mi>W</mi><mi>U</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mn>1.6</mn></mrow></mrow></mrow></math></span>(<em>C</em><sub>a</sub>, atmospheric CO<sub>2</sub> concentration; <em>C</em><sub>i</sub>, intercellular CO<sub>2</sub> concentration), may vary from that derived from <span><math><mrow><mi>W</mi><mi>U</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mrow><mi>A</mi><mo>/</mo><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>sw</mi></mrow></msub></mrow></mrow></mrow></math></span>(<em>A</em>, net photosynthetic rate; <em>g</em><sub>sw</sub>, stomatal conductance to water vapor). In the study, the LI-6400 portable photosynthesis system was used for monitoring the leaf gas exchange of two C<sub>3</sub> (soybean and wheat) and two C<sub>4</sub> (maize and grain amaranth) species under changing irradiance (<em>I</em>) and CO<sub>2</sub> concentration conditions. One paired-sample <em>t</em> test was used to compare the significant differences between <em>WUE</em><sub>i</sub> values calculated by different equations and the observed values. The results showed that <span><math><mrow><mi>W</mi><mi>U</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mn>1.6</mn></mrow></mrow></mrow></math></span> significantly overestimated the calculated <em>WUE</em><sub>i</sub> values than their corresponding observations by at least 17.78 %, 23.20 %, 9.07 %, and 14.26 % in light-response of <em>WUE</em><sub>i</sub> (<em>WUE</em><sub>i</sub><em>–I</em>) and by at least 23.28 %, 22.02 %, 13.44 %, and 12.59 % in CO<sub>2</sub>-response of <em>WUE</em><sub>i</sub> (<em>WUE</em><sub>i</sub>–<em>C</em><sub>i</sub>) curves for soybean, wheat, maize, and grain amaranth, respectively. However, the relationship between net photosynthetic rate (<em>A</em>) and stomatal conductance to CO<sub>2</sub> (<em>g</em><sub>sc</sub>) can be improved by incorporating an empirical slope (<em>g</em><sub>1</sub>) and residual stomatal conductance (<em>g</em><sub>0</sub>), which can be characterized as<span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>sc</mi></mrow></msub><mo>–</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>–</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>. Consequently, <em>WUE</em><sub>i</sub> can be calculated by <span><math><mrow><mi>W</mi><mi>U</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1.6</mn><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1.6</mn><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>sw</mi></mrow></msub></mrow></mfrac></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>)</mo></mrow></mrow></math></span>. It is highlighted that this modified equation can not only more accurately characterize the <em>WUE</em><sub>i</sub> in responses to varying <em>I</em> and CO<sub>2</sub> concentration conditions but also yields a remarkably high coefficient of determination (<em>R</em><sup>2</sup> > 0.989) for the four species. These findings will provide plant physiologists and agronomists with a precise calculation tool to better understand and optimize crop water use efficiency in the face of environmental challenges.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"306 ","pages":"Article 109136"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377424004724","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Intrinsic water use efficiency (WUEi) is a critical parameter that encapsulates the equilibrium between carbon assimilation and the concomitant water expenditure. Enhancing the WUEi of crops is not only instrumental in bolstering their resilience to drought but also enables higher carbon fixation efficiency under conditions of scarce water resources. Improving the WUEi of crop varieties has become a major goal because water has become a critical limiting factor in crop productivity within the context of global change. The WUEi, traditionally calculated by (Ca, atmospheric CO2 concentration; Ci, intercellular CO2 concentration), may vary from that derived from (A, net photosynthetic rate; gsw, stomatal conductance to water vapor). In the study, the LI-6400 portable photosynthesis system was used for monitoring the leaf gas exchange of two C3 (soybean and wheat) and two C4 (maize and grain amaranth) species under changing irradiance (I) and CO2 concentration conditions. One paired-sample t test was used to compare the significant differences between WUEi values calculated by different equations and the observed values. The results showed that significantly overestimated the calculated WUEi values than their corresponding observations by at least 17.78 %, 23.20 %, 9.07 %, and 14.26 % in light-response of WUEi (WUEi–I) and by at least 23.28 %, 22.02 %, 13.44 %, and 12.59 % in CO2-response of WUEi (WUEi–Ci) curves for soybean, wheat, maize, and grain amaranth, respectively. However, the relationship between net photosynthetic rate (A) and stomatal conductance to CO2 (gsc) can be improved by incorporating an empirical slope (g1) and residual stomatal conductance (g0), which can be characterized as. Consequently, WUEi can be calculated by . It is highlighted that this modified equation can not only more accurately characterize the WUEi in responses to varying I and CO2 concentration conditions but also yields a remarkably high coefficient of determination (R2 > 0.989) for the four species. These findings will provide plant physiologists and agronomists with a precise calculation tool to better understand and optimize crop water use efficiency in the face of environmental challenges.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.