Applied Electric Field Effects on Diffusivity and Electrical Double-Layer Thickness (Small 46/2024)

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-19 DOI:10.1002/smll.202470342
Md Masuduzzaman, Chirodeep Bakli, Murat Barisik, BoHung Kim
{"title":"Applied Electric Field Effects on Diffusivity and Electrical Double-Layer Thickness (Small 46/2024)","authors":"Md Masuduzzaman,&nbsp;Chirodeep Bakli,&nbsp;Murat Barisik,&nbsp;BoHung Kim","doi":"10.1002/smll.202470342","DOIUrl":null,"url":null,"abstract":"<p><b>Nanoconfined Aqueous Electrolytes</b></p><p>This computational simulation and continuum framework-based study reveals insights into electroosmotic flow (EOF) in nanoconfined electrolytes. The research establishes a linear relationship between electric field strength and fluid velocity, uncovering two distinct transport regimes. These findings enhance the molecular understanding of EOF, with significant implications for advancing nanofluidic technologies, including applications in drug delivery systems and lab-on-a-chip devices. More in article number 2404397, BoHung Kim and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 46","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202470342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202470342","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoconfined Aqueous Electrolytes

This computational simulation and continuum framework-based study reveals insights into electroosmotic flow (EOF) in nanoconfined electrolytes. The research establishes a linear relationship between electric field strength and fluid velocity, uncovering two distinct transport regimes. These findings enhance the molecular understanding of EOF, with significant implications for advancing nanofluidic technologies, including applications in drug delivery systems and lab-on-a-chip devices. More in article number 2404397, BoHung Kim and co-workers.

Abstract Image

Abstract Image

外加电场对扩散率和双电层厚度的影响(小号 46/2024)
纳米约束水电解质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信