Fatemeh Gandomkar, Mostafa Khajeh, Ali Reza Oveisi, Pouya Karimi, Hermenegildo García
{"title":"Preparation of a novel porous organic polymer for selective extraction/determination of palladium ions from water samples","authors":"Fatemeh Gandomkar, Mostafa Khajeh, Ali Reza Oveisi, Pouya Karimi, Hermenegildo García","doi":"10.1016/j.polymer.2024.127858","DOIUrl":null,"url":null,"abstract":"In this research, a new porphyrin-based porous organic polymer (POP), named here PPOP-UOZ-1 (UOZ stands for the University of Zabol), was synthesized through a solvothermal condensation reaction between 5,10,15,20-<strong>t</strong>etrakis(4-<strong>a</strong>mino<strong>p</strong>henyl)<strong>p</strong>orphyrin (TAPP, Porph-NH<sub>2</sub>) and 2,2'-[ethane-1,2-diylbis(oxy)]<strong>d</strong>ibenz<strong>a</strong>ldehyde (Dialdehyde, DA). The chemical structure, morphology, and surface properties of the PPOP-UOZ-1 were assessed using numerous techniques, including TGA, BET, FT- IR, PXRD, and SEM/EDX. The nominal PPOP-UOZ-1 was then used as an adsorbent for selective (better than 92%) extraction of Pd(II) from aqueous solutions. The adsorption process was optimized by studying the effect of various factors such as pH, the type and volume of eluent, adsorption and desorption time, and the amount of adsorbent. The results exhibited that the maximum adsorption capacity of PPOP-UOZ-1 for Pd(II) was 208.3 mg/g at a pH of 3.0, based on the Langmuir isotherm model (a determination coefficient of 0.9887). The adsorbent showed excellent selectivity for Pd(II) over other coexisting metal ions, with a recovery rate higher than 92%. Furthermore, the PPOP-UOZ-1 could be reused for at least six adsorption-desorption cycles without substantial loss of efficiency. This proposed adsorbent and approach was further applicable for the efficient extraction of Pd(II) from environmental water samples.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"15 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127858","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a new porphyrin-based porous organic polymer (POP), named here PPOP-UOZ-1 (UOZ stands for the University of Zabol), was synthesized through a solvothermal condensation reaction between 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP, Porph-NH2) and 2,2'-[ethane-1,2-diylbis(oxy)]dibenzaldehyde (Dialdehyde, DA). The chemical structure, morphology, and surface properties of the PPOP-UOZ-1 were assessed using numerous techniques, including TGA, BET, FT- IR, PXRD, and SEM/EDX. The nominal PPOP-UOZ-1 was then used as an adsorbent for selective (better than 92%) extraction of Pd(II) from aqueous solutions. The adsorption process was optimized by studying the effect of various factors such as pH, the type and volume of eluent, adsorption and desorption time, and the amount of adsorbent. The results exhibited that the maximum adsorption capacity of PPOP-UOZ-1 for Pd(II) was 208.3 mg/g at a pH of 3.0, based on the Langmuir isotherm model (a determination coefficient of 0.9887). The adsorbent showed excellent selectivity for Pd(II) over other coexisting metal ions, with a recovery rate higher than 92%. Furthermore, the PPOP-UOZ-1 could be reused for at least six adsorption-desorption cycles without substantial loss of efficiency. This proposed adsorbent and approach was further applicable for the efficient extraction of Pd(II) from environmental water samples.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.