{"title":"Spontaneous Lifting and Self-Cleaning of Gas Hydrate Crystals","authors":"Chen Lang, Zherui Chen, Aliakbar Hassanpouryouzband, Mehrdad Vasheghani Farahani, Lunxiang Zhang, Jiafei Zhao, Yongchen Song","doi":"10.1021/acsnano.4c12943","DOIUrl":null,"url":null,"abstract":"Crystal fouling, which refers to the accumulation of precipitates on surfaces and the associated damage, is a common problem in many industrial processes. In deepwater oil and gas transportation, hydrate blockage poses as a considerable barrier. Consequently, modifying hydrophobicity of surfaces has become an increasingly focused strategy to mitigate hydrate. However, the design of surfaces that effectively control the hydrate remains challenging. Herein, we report a superior smooth anti-hydrate material based on silanized modification. The low-adhesion silanized silicon wafer (SSW) realizes a win–win strategy of hard formation and easy removal. Through a comprehensive study combining experimental validation with theoretical analysis, the unique characteristics of SSW in the field of anti-hydrate surfaces were deeply discussed. Various hydrate crystals exhibited a completely different hydrate growth mode at the SSW surface, in which hydrate crystals spontaneously elevated and lifted themselves off from the surface. The presence of the fluorine element on the SSW surface allowed self-lifting growth of hydrate crystals after they covered the water droplet. And the loose and porous crystal structure in this self-lifting growth could reduce the contact area between the hydrate crystals and the substrate, allowing the crystals with minimal adhesion force and removal disturbance. Furthermore, the gas enrichment on the SSW surface also reduced the contact with the substrate, thereby decreasing the adhesion and allowing self-cleaning behavior. These results indicate that the silanized surface is a promising candidate for developing anti-hydrate materials for hydrocarbon production and transportation industry.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12943","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Crystal fouling, which refers to the accumulation of precipitates on surfaces and the associated damage, is a common problem in many industrial processes. In deepwater oil and gas transportation, hydrate blockage poses as a considerable barrier. Consequently, modifying hydrophobicity of surfaces has become an increasingly focused strategy to mitigate hydrate. However, the design of surfaces that effectively control the hydrate remains challenging. Herein, we report a superior smooth anti-hydrate material based on silanized modification. The low-adhesion silanized silicon wafer (SSW) realizes a win–win strategy of hard formation and easy removal. Through a comprehensive study combining experimental validation with theoretical analysis, the unique characteristics of SSW in the field of anti-hydrate surfaces were deeply discussed. Various hydrate crystals exhibited a completely different hydrate growth mode at the SSW surface, in which hydrate crystals spontaneously elevated and lifted themselves off from the surface. The presence of the fluorine element on the SSW surface allowed self-lifting growth of hydrate crystals after they covered the water droplet. And the loose and porous crystal structure in this self-lifting growth could reduce the contact area between the hydrate crystals and the substrate, allowing the crystals with minimal adhesion force and removal disturbance. Furthermore, the gas enrichment on the SSW surface also reduced the contact with the substrate, thereby decreasing the adhesion and allowing self-cleaning behavior. These results indicate that the silanized surface is a promising candidate for developing anti-hydrate materials for hydrocarbon production and transportation industry.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.