Dominic Shiels, Zhou Lu, Magda Pascual-Borràs, Nathalia Cajiao, Thompson V. Marinho, William W. Brennessel, Michael L. Neidig, R. John Errington, Ellen M. Matson
{"title":"Vanadium Substitution Dictates H Atom Uptake at Lindqvist-type Polyoxotungstates","authors":"Dominic Shiels, Zhou Lu, Magda Pascual-Borràs, Nathalia Cajiao, Thompson V. Marinho, William W. Brennessel, Michael L. Neidig, R. John Errington, Ellen M. Matson","doi":"10.1021/acs.inorgchem.4c03873","DOIUrl":null,"url":null,"abstract":"Understanding how modification of molecular structures changes the thermochemistry of H atom uptake can provide design criteria for the formation of highly active catalysts for reductive transformations. Herein, we describe the effect of doping an atomically precise polyoxotungstate with vanadium on proton-coupled electron transfer (PCET) reactivity. The Lindqvist-type polyoxotungstate [W<sub>6</sub>O<sub>19</sub>]<sup>2–</sup> displays reversible redox chemistry, which was found to be unchanged in the presence of acid, indicating an inability to couple reduction with protonation. However, the incorporation of a single vanadium center into the structure significantly changes the reactivity, and the potential required for one-electron reduction of [VW<sub>5</sub>O<sub>19</sub>]<sup>3–</sup> was shown to vary with the strength of the acid added. Construction of a potential-p<i>K</i><sub>a</sub> diagram allowed assessment of the thermodynamics of H atom uptake, indicating BDFE(O–H) ≈ 64 kcal/mol, while chemical synthesis of the reduced/protonated derivative (TBA)<sub>3</sub>[VW<sub>5</sub>O<sub>19</sub>H] was used to probe the position of protonation.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"69 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c03873","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how modification of molecular structures changes the thermochemistry of H atom uptake can provide design criteria for the formation of highly active catalysts for reductive transformations. Herein, we describe the effect of doping an atomically precise polyoxotungstate with vanadium on proton-coupled electron transfer (PCET) reactivity. The Lindqvist-type polyoxotungstate [W6O19]2– displays reversible redox chemistry, which was found to be unchanged in the presence of acid, indicating an inability to couple reduction with protonation. However, the incorporation of a single vanadium center into the structure significantly changes the reactivity, and the potential required for one-electron reduction of [VW5O19]3– was shown to vary with the strength of the acid added. Construction of a potential-pKa diagram allowed assessment of the thermodynamics of H atom uptake, indicating BDFE(O–H) ≈ 64 kcal/mol, while chemical synthesis of the reduced/protonated derivative (TBA)3[VW5O19H] was used to probe the position of protonation.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.