Competitive interactions modify the direct effects of climate

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Ecography Pub Date : 2024-11-20 DOI:10.1111/ecog.07322
Ditte Marie Christiansen, Johan Ehrlén, Kristoffer Hylander
{"title":"Competitive interactions modify the direct effects of climate","authors":"Ditte Marie Christiansen, Johan Ehrlén, Kristoffer Hylander","doi":"10.1111/ecog.07322","DOIUrl":null,"url":null,"abstract":"As the climate is changing, species respond by changing their distributions and abundances. The effects of climate are not only direct, but also occur via changes in biotic interactions, such as competition. Yet, the role of competition in mediating the effects of climate is still largely unclear. To examine how climate influences species performance, directly and via competition with other species, we transplanted two moss species differing in climate niches, alone and together at 59 sites along a climate gradient. Growth was monitored over three growing seasons. In the absence of competition, both species performed better under warmer conditions. Yet, when transplanted together, a warmer climate had negative effects on the northern moss, while the effects remained positive for the southern species. The negative effect of a cold climate on the southern species was larger when both species were transplanted together. Over three growing seasons, the southern species almost outcompeted the northern in warmer climates. Our results illustrate how competitive interactions can modify, and even reverse, the direct effects of climate on organism performance. A broader implication of our results is that species interactions can have important effects on how environmental and climate change influence performance and abundance.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"176 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07322","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

As the climate is changing, species respond by changing their distributions and abundances. The effects of climate are not only direct, but also occur via changes in biotic interactions, such as competition. Yet, the role of competition in mediating the effects of climate is still largely unclear. To examine how climate influences species performance, directly and via competition with other species, we transplanted two moss species differing in climate niches, alone and together at 59 sites along a climate gradient. Growth was monitored over three growing seasons. In the absence of competition, both species performed better under warmer conditions. Yet, when transplanted together, a warmer climate had negative effects on the northern moss, while the effects remained positive for the southern species. The negative effect of a cold climate on the southern species was larger when both species were transplanted together. Over three growing seasons, the southern species almost outcompeted the northern in warmer climates. Our results illustrate how competitive interactions can modify, and even reverse, the direct effects of climate on organism performance. A broader implication of our results is that species interactions can have important effects on how environmental and climate change influence performance and abundance.
竞争性相互作用改变了气候的直接影响
随着气候的变化,物种通过改变其分布和数量来做出反应。气候的影响不仅是直接的,也会通过竞争等生物相互作用的变化而发生。然而,竞争在调节气候效应中的作用在很大程度上仍不明确。为了研究气候如何直接影响物种的表现以及如何通过与其他物种的竞争来影响物种的表现,我们将两种气候生态位不同的苔藓物种单独或一起移植到沿气候梯度的 59 个地点。在三个生长季中对其生长情况进行了监测。在没有竞争的情况下,这两种苔藓在较温暖的条件下表现更好。然而,当两种苔藓一起移植时,较暖的气候对北方苔藓有负面影响,而对南方苔藓的影响仍然是正面的。当两种苔藓一起移植时,寒冷气候对南方苔藓的负面影响更大。在三个生长季中,南方苔藓几乎在温暖气候条件下战胜了北方苔藓。我们的结果说明了竞争性相互作用如何改变甚至逆转气候对生物表现的直接影响。我们的研究结果还有一个更广泛的含义,即物种间的相互作用会对环境和气候变化如何影响生物的表现和丰度产生重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信