{"title":"Abscisic acid enhances SmAPK1-mediated phosphorylation of SmbZIP4 to positively regulate tanshinone biosynthesis in Salvia miltiorrhiza","authors":"Ruiyan Zhu, Lulu Peng, Ying Xu, Changle Liu, Lili Shao, Tingyao Liu, Minyu Shou, Qinzhe Lin, Biao Wang, Min Shi, Guoyin Kai","doi":"10.1111/nph.20274","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Tanshinones, isolated from <i>Salvia miltiorrhiza</i>, is efficient to treat cardiovascular and cerebrovascular diseases. Abscisic acid (ABA) treatment is found to promote tanshinone biosynthesis; however, the underlying mechanism has not been fully elucidated.</li>\n<li>A protein kinase namely SmAPK1 was identified as an important positive regulator of ABA-induced tanshinone accumulation in <i>S. miltiorrhiza</i>. Using SmAPK1 as bait, a basic region leucine zipper (bZIP) family transcription factor SmbZIP4 was screened from the cDNA library. Functional identification reveals that SmbZIP4 negatively regulates tanshinone biosynthesis in hairy roots and transgenic plants through directly targeting <i>SmGGPPS</i> and <i>SmCYP76AK1</i>.</li>\n<li>SmAPK1 phosphorylates the Ser97 and Thr99 site of SmbZIP4, leading to its degradation via the 26S proteasome pathway, which is promoted by ABA-induced enhancement of SmAPK1 kinase activity. Degradation of SmbZIP4 upregulates the expression levels of <i>SmGGPPS</i> and <i>SmCYP76AK1</i>, resulting in increased tanshinone content.</li>\n<li>Taken together, our results reveal new molecular mechanism by which SmAPK1-SmbZIP4 module plays a crucial role in ABA-induced tanshinone accumulation. This study sheds new insights in the biosynthesis of bioactive compounds in medicinal plants.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"150 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20274","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tanshinones, isolated from Salvia miltiorrhiza, is efficient to treat cardiovascular and cerebrovascular diseases. Abscisic acid (ABA) treatment is found to promote tanshinone biosynthesis; however, the underlying mechanism has not been fully elucidated.
A protein kinase namely SmAPK1 was identified as an important positive regulator of ABA-induced tanshinone accumulation in S. miltiorrhiza. Using SmAPK1 as bait, a basic region leucine zipper (bZIP) family transcription factor SmbZIP4 was screened from the cDNA library. Functional identification reveals that SmbZIP4 negatively regulates tanshinone biosynthesis in hairy roots and transgenic plants through directly targeting SmGGPPS and SmCYP76AK1.
SmAPK1 phosphorylates the Ser97 and Thr99 site of SmbZIP4, leading to its degradation via the 26S proteasome pathway, which is promoted by ABA-induced enhancement of SmAPK1 kinase activity. Degradation of SmbZIP4 upregulates the expression levels of SmGGPPS and SmCYP76AK1, resulting in increased tanshinone content.
Taken together, our results reveal new molecular mechanism by which SmAPK1-SmbZIP4 module plays a crucial role in ABA-induced tanshinone accumulation. This study sheds new insights in the biosynthesis of bioactive compounds in medicinal plants.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.