Jian Ji , Bin Tong , Hong-Zhi Cui , Xin-Tao Tang , Marcel Hürlimann , Shigui Du
{"title":"A QGIS framework for physically-based probabilistic modelling of landslide susceptibility: QGIS-FORM","authors":"Jian Ji , Bin Tong , Hong-Zhi Cui , Xin-Tao Tang , Marcel Hürlimann , Shigui Du","doi":"10.1016/j.envsoft.2024.106258","DOIUrl":null,"url":null,"abstract":"<div><div>Earthquake-induced regional landslides frequently result in substantial economic losses and casualties. Conducting landslide susceptibility assessments is essential for mitigating these risks and minimizing potential damage. To address the diverse needs of professionals in various disciplines, we have developed an open-source plugin for QGIS, named QGIS-FORM. This plugin integrates functions of both physically-based model (PM) and physically-based probabilistic model (PPM). The PM employs pseudo-static infinite slope stability model, while the PPM utilizes an improved first order reliability method (FORM) to perform landslide probability analysis over a spatial region. To verify its effectiveness, the plugin was applied to the Maerkang landslide event in 2022. Based on the PM and the PPM, the landslide susceptibility assessments were evaluated using several parameters including slope, aspect, stratum, and PGA. In addition, the Receiver Operating Characteristic (ROC) curve and Balanced Accuracy were employed to assess their predictive performance. The landslide susceptibility results indicate that landslides in Maerkang are mostly concentrated in slopes between 30° and 50°, and the geological conditions of the Xinduqiao Formation (<span><math><mrow><msub><mi>T</mi><mn>3</mn></msub><mi>X</mi></mrow></math></span>) are more prone to landslides. Compared to PM, the PPM can achieve higher AUC values when the parameter uncertainties are properly characterized. Overall, the PPM exhibits higher accuracy and is more capable of identifying potential landslides than the physically-based model, thereby providing a more reliable way and/or offering a scientific basis for the management and mitigation of landslide disaster risks.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106258"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003190","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Earthquake-induced regional landslides frequently result in substantial economic losses and casualties. Conducting landslide susceptibility assessments is essential for mitigating these risks and minimizing potential damage. To address the diverse needs of professionals in various disciplines, we have developed an open-source plugin for QGIS, named QGIS-FORM. This plugin integrates functions of both physically-based model (PM) and physically-based probabilistic model (PPM). The PM employs pseudo-static infinite slope stability model, while the PPM utilizes an improved first order reliability method (FORM) to perform landslide probability analysis over a spatial region. To verify its effectiveness, the plugin was applied to the Maerkang landslide event in 2022. Based on the PM and the PPM, the landslide susceptibility assessments were evaluated using several parameters including slope, aspect, stratum, and PGA. In addition, the Receiver Operating Characteristic (ROC) curve and Balanced Accuracy were employed to assess their predictive performance. The landslide susceptibility results indicate that landslides in Maerkang are mostly concentrated in slopes between 30° and 50°, and the geological conditions of the Xinduqiao Formation () are more prone to landslides. Compared to PM, the PPM can achieve higher AUC values when the parameter uncertainties are properly characterized. Overall, the PPM exhibits higher accuracy and is more capable of identifying potential landslides than the physically-based model, thereby providing a more reliable way and/or offering a scientific basis for the management and mitigation of landslide disaster risks.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.