Angelo C. Gurgel, Joaquim E. A. Seabra, Sofia M. Arantes, Marcelo M. R. Moreira, Lee R. Lynd, Rosana Galindo
{"title":"Contribution of double-cropped maize ethanol in Brazil to sustainable development","authors":"Angelo C. Gurgel, Joaquim E. A. Seabra, Sofia M. Arantes, Marcelo M. R. Moreira, Lee R. Lynd, Rosana Galindo","doi":"10.1038/s41893-024-01424-5","DOIUrl":null,"url":null,"abstract":"Sustainable energy and food production can include double-cropping where two crops are produced sequentially on land required for one crop to maximize resource use. In Brazil, this system involves maize being planted as a second crop following soybean to generate ethanol, thus allowing for combined food–energy production. However, the impacts of such production systems on several sustainable development goals (SDG) and associated indirect land-use changes have not yet fully been explored. We evaluate the fast-expanding food–energy system of double-cropped maize ethanol in the Central-West region of Brazil with respect to SDG impacts, combining life-cycle environmental and computable general equilibrium socio-economic models. We find that this system provides renewable and affordable energy (5 billion litres of ethanol, 600 GWh of electrical power) and feed (4 million tons of distillers dried grains), reduces greenhouse gas emissions (9.3 million to 13.2 million tCO2e), saves land (160,000 ha), boosts regional income and consumption, improves food security and benefits ecosystems and human health. Underlying drivers associated with this were the integration of feedstock supply into existing practices and the use of eucalyptus chips to provide process energy. The sustainability of this production system is improved further by carbon capture and storage. Combined food–energy production systems can help improve resource-use efficiency, but the extent to which such systems contribute to sustainable development has not yet been fully explored. This study evaluates this system in double-cropped maize ethanol production in Brazil.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 11","pages":"1429-1440"},"PeriodicalIF":25.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41893-024-01424-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01424-5","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable energy and food production can include double-cropping where two crops are produced sequentially on land required for one crop to maximize resource use. In Brazil, this system involves maize being planted as a second crop following soybean to generate ethanol, thus allowing for combined food–energy production. However, the impacts of such production systems on several sustainable development goals (SDG) and associated indirect land-use changes have not yet fully been explored. We evaluate the fast-expanding food–energy system of double-cropped maize ethanol in the Central-West region of Brazil with respect to SDG impacts, combining life-cycle environmental and computable general equilibrium socio-economic models. We find that this system provides renewable and affordable energy (5 billion litres of ethanol, 600 GWh of electrical power) and feed (4 million tons of distillers dried grains), reduces greenhouse gas emissions (9.3 million to 13.2 million tCO2e), saves land (160,000 ha), boosts regional income and consumption, improves food security and benefits ecosystems and human health. Underlying drivers associated with this were the integration of feedstock supply into existing practices and the use of eucalyptus chips to provide process energy. The sustainability of this production system is improved further by carbon capture and storage. Combined food–energy production systems can help improve resource-use efficiency, but the extent to which such systems contribute to sustainable development has not yet been fully explored. This study evaluates this system in double-cropped maize ethanol production in Brazil.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.