An algebraic classification of means

IF 0.6 3区 数学 Q3 MATHEMATICS
L. R. Berrone
{"title":"An algebraic classification of means","authors":"L. R. Berrone","doi":"10.1007/s10474-024-01471-6","DOIUrl":null,"url":null,"abstract":"<div><p>Given a real interval <span>\\(I\\)</span>, a group of homeomorphisms <span>\\(\\mathcal{G} \\left(M,I\\right)\\)</span> is associated to every continuous mean defined <span>\\(i\\)</span>n <span>\\(I\\)</span>. Two\nmeans <span>\\(M\\)</span>, <span>\\(N\\)</span> defined in <span>\\(I\\)</span> will belong to the same class when <span>\\(\\mathcal{G} (M, I) = \\mathcal{G} (N,I)\\)</span>. The equivalence relation\ndefined in this way in <span>\\(\\mathcal{CM}(I)\\)</span>, the family of\ncontinuous means defined in <span>\\(I\\)</span>, gives a principle of classification based\non the algebrai object <span>\\(\\mathcal{G}(M, I)\\)</span>. Two major questions\nare raised by this classification: 1) the problem of computing <span>\\(\\mathcal{G} (M, I)\\)</span> for a given mean <span>\\(M \\in \\mathcal{CM} (I)\\)</span>, and 2) the determination of general properties of the means belonging to a\nsame class. Some instances of these questions will find suitable responses\nin the present paper.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 1","pages":"209 - 233"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01471-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a real interval \(I\), a group of homeomorphisms \(\mathcal{G} \left(M,I\right)\) is associated to every continuous mean defined \(i\)n \(I\). Two means \(M\), \(N\) defined in \(I\) will belong to the same class when \(\mathcal{G} (M, I) = \mathcal{G} (N,I)\). The equivalence relation defined in this way in \(\mathcal{CM}(I)\), the family of continuous means defined in \(I\), gives a principle of classification based on the algebrai object \(\mathcal{G}(M, I)\). Two major questions are raised by this classification: 1) the problem of computing \(\mathcal{G} (M, I)\) for a given mean \(M \in \mathcal{CM} (I)\), and 2) the determination of general properties of the means belonging to a same class. Some instances of these questions will find suitable responses in the present paper.

手段的代数分类
给定一个实区间 \(I\), 一组同构的 \(\mathcal{G}\是与定义在每一个连续平均值相关联的当 \(\mathcal{G} (M, I) = \mathcal{G} (N,I)\) 时,在 \(I\) 中定义的两个均值 \(M\), \(N\) 将属于同一类。这样在 \(\mathcal{CM}(I)\) 中定义的等价关系,即 \(I\) 中定义的连续手段族,给出了基于代数对象 \(\mathcal{G}(M, I)\) 的分类原则。这个分类提出了两个主要问题:1)计算给定均值 \(M \in \mathcal{CM} (I)\) 的 \(\mathcal{G} (M, I)\)的问题;2)确定属于同一类的均值的一般性质。本文将对这些问题的一些实例做出适当的回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信