Average behaviour of Fourier coefficients of \(j\)-symmetric power \(L\)-functions over some polynomials

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Sarkar, M. Shahvez Alam
{"title":"Average behaviour of Fourier coefficients of \\(j\\)-symmetric power \\(L\\)-functions over some polynomials","authors":"A. Sarkar,&nbsp;M. Shahvez Alam","doi":"10.1007/s10474-024-01467-2","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the asymptotics of the second moment of the coefficient of <span>\\(j\\)</span>-th symmetric poower lift of classical Hecke eigenforms over certain polynomials, given by a sum of triangular numbers with certain positive coefficients. More precisely, for each <span>\\(j \\in \\mathbb{N}\\)</span>, we obtain asymptotics for the sums given by \n</p><div><div><span>$$\\sum_{\\substack{\\alpha(\\underline{x}))+1\\le X \\\\ \\underline{x} \\in {\\mathbb Z}^{4}}}\n\\lambda_{ sym^{j}f}^{2}(\\alpha(\\underline{x})+1) ,\\quad \\sum_{\\substack{\\beta(\\underline{x}))+1\\le X \\\\ \\underline{x} \\in {\\mathbb Z}^{4}}}\\lambda_{ sym^{j}f}^{2}(\\beta(\\underline{x})+1)$$</span></div></div><p>,\nwhere <span>\\(\\lambda_{ sym^{j}f}^{2}(n)\\)</span> denotes the coefficient of <span>\\(j\\)</span>-th symmetric power lift of classical Hecke eigenforms <span>\\(f\\)</span>, the polynomials <span>\\(\\alpha\\)</span> and <span>\\(\\beta\\)</span> are given by \n</p><div><div><span>$$\\alpha(\\underline{x}) = \\frac{1}{2} \\big( x_{1}^{2}+ x_{1} + x_{2}^{2} + x_{2} + 2 ( x_{3}^{2} + x_{3}) + 4 (x_{4}^{2} + x_{4}) \\big) \\in \\mathbb {Q}[x_{1},x_{2},x_{3},x_{4}],\n$$</span></div></div><p>\nand \n</p><div><div><span>$$\\beta(\\underline{x}) = x_{1}^{2} + \\frac{x_{2}(x_{2} + 1)}{2} + \\frac{x_{3}(x_{3}+1)}{2} + 6\\cdot \\frac{x_{4}( x_{4}+1)}{2} \\in {\\mathbb Q}[x_{1},x_{2},x_{3},x_{4}]$$</span></div></div></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 1","pages":"75 - 93"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01467-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish the asymptotics of the second moment of the coefficient of \(j\)-th symmetric poower lift of classical Hecke eigenforms over certain polynomials, given by a sum of triangular numbers with certain positive coefficients. More precisely, for each \(j \in \mathbb{N}\), we obtain asymptotics for the sums given by

$$\sum_{\substack{\alpha(\underline{x}))+1\le X \\ \underline{x} \in {\mathbb Z}^{4}}} \lambda_{ sym^{j}f}^{2}(\alpha(\underline{x})+1) ,\quad \sum_{\substack{\beta(\underline{x}))+1\le X \\ \underline{x} \in {\mathbb Z}^{4}}}\lambda_{ sym^{j}f}^{2}(\beta(\underline{x})+1)$$

, where \(\lambda_{ sym^{j}f}^{2}(n)\) denotes the coefficient of \(j\)-th symmetric power lift of classical Hecke eigenforms \(f\), the polynomials \(\alpha\) and \(\beta\) are given by

$$\alpha(\underline{x}) = \frac{1}{2} \big( x_{1}^{2}+ x_{1} + x_{2}^{2} + x_{2} + 2 ( x_{3}^{2} + x_{3}) + 4 (x_{4}^{2} + x_{4}) \big) \in \mathbb {Q}[x_{1},x_{2},x_{3},x_{4}], $$

and

$$\beta(\underline{x}) = x_{1}^{2} + \frac{x_{2}(x_{2} + 1)}{2} + \frac{x_{3}(x_{3}+1)}{2} + 6\cdot \frac{x_{4}( x_{4}+1)}{2} \in {\mathbb Q}[x_{1},x_{2},x_{3},x_{4}]$$
一些多项式上的α-对称幂函数的傅里叶系数的平均行为
我们建立了经典赫克特征形式在某些多项式上的第\(j\)-th对称poower提升的系数的第二矩的渐近线,该系数由具有某些正系数的三角形数的和给出。更准确地说,对于每一个(j 在{\mathbb{N}\中),我们都会得到由 $$\sum_{\substack\alpha(\underline{x}))+1\le X \\\underline{x} 给出的和的渐近性。\在{\mathbb Z}^{4}}}\lambda_{ sym^{j}f}^{2}(\alpha(\underline{x})+1) ,\quad \sum_{\substack{beta(\underline{x}))+1\le X \\underline{x}\其中 \(\lambda_{ sym^{j}f}^{2}(n)\) 表示经典 Hecke 特征形式 \(f\) 的第 \(j\) -th 次对称幂举的系数、多项式 \(α) 和 \(β) 由 $$\α(\underline{x}) = \frac{1}{2} 给出\big( x_{1}^{2}+ x_{1}+ x_{2}^{2}+ x_{2}+ 2 ( x_{3}^{2} + x_{3}) + 4 (x_{4}^{2} + x_{4}) \big) \in \mathbb {Q}[x_{1},x_{2},x_{3},x_{4}],$$and $$\beta(\underline{x}) = x_{1}^{2}+ \frac{x_{2}(x_{2} + 1)}{2}+ \frac{x_{3}(x_{3}+1)}{2} + 6\cdot \frac{x_{4}( x_{4}+1)}{2}\in {\mathbb Q}[x_{1},x_{2},x_{3},x_{4}]$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信