{"title":"Reclassification of two Nocardiopsis species using whole genome analysis","authors":"Guendouz Dif, Nadjette Djemouai, Noureddine Bouras, Abdelghani Zitouni","doi":"10.1007/s10482-024-02038-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study revisits the taxonomic classification of the genus <i>Nocardiopsis</i> through the application of advanced genome-based methodologies, representing a notable advancement beyond traditional approaches that primarily rely on 16S rRNA gene sequences and phenotypic traits. The advent of Next-Generation Sequencing (NGS) and sophisticated bioinformatic tools has enabled a more precise framework for prokaryotic classification. However, many recognized species still lack complete genome sequences. In this study, we employed overall genome-related indices (OGRI), particularly Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (dDDH), to reassess the phylogenetic relationships within the genus. Comparative analyses of complete 16S rRNA sequences demonstrated high genetic similarity between <i>N</i>. <i>umidischolae</i> 66/93<sup> T</sup> and <i>N</i>. <i>tropica</i> VKMAc-1457<sup> T</sup> (99.61% similarity), as well as between <i>N</i>. <i>rhodophaea</i> JCM15313<sup>T</sup> and <i>N</i>. <i>rosea</i> JCM15314<sup>T</sup> (100% identity). The dDDH, ANI%, FastANI%, ANIm, and ANIb values further supported these results, with 73.2%, 96.94%, 96.15%, 97.19%, and 96.74% for the former pair, and 93.6%, 99.13%, 99.97%, 99.98%, and 99.27% for the latter pair, respectively. All values surpassed the species delineation thresholds of 70% for dDDH and 95–96% for ANI. Consequently, we propose reclassifying <i>N</i>. <i>umidischolae</i> as a heterotypic synonym of <i>N</i>. <i>tropica</i>, and <i>N</i>. <i>rosea</i> as a heterotypic synonym of <i>N</i>. <i>rhodophaea</i>, in accordance with the International Code of Nomenclature of Prokaryotes (ICNP).</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"118 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10482-024-02038-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study revisits the taxonomic classification of the genus Nocardiopsis through the application of advanced genome-based methodologies, representing a notable advancement beyond traditional approaches that primarily rely on 16S rRNA gene sequences and phenotypic traits. The advent of Next-Generation Sequencing (NGS) and sophisticated bioinformatic tools has enabled a more precise framework for prokaryotic classification. However, many recognized species still lack complete genome sequences. In this study, we employed overall genome-related indices (OGRI), particularly Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (dDDH), to reassess the phylogenetic relationships within the genus. Comparative analyses of complete 16S rRNA sequences demonstrated high genetic similarity between N. umidischolae 66/93 T and N. tropica VKMAc-1457 T (99.61% similarity), as well as between N. rhodophaea JCM15313T and N. rosea JCM15314T (100% identity). The dDDH, ANI%, FastANI%, ANIm, and ANIb values further supported these results, with 73.2%, 96.94%, 96.15%, 97.19%, and 96.74% for the former pair, and 93.6%, 99.13%, 99.97%, 99.98%, and 99.27% for the latter pair, respectively. All values surpassed the species delineation thresholds of 70% for dDDH and 95–96% for ANI. Consequently, we propose reclassifying N. umidischolae as a heterotypic synonym of N. tropica, and N. rosea as a heterotypic synonym of N. rhodophaea, in accordance with the International Code of Nomenclature of Prokaryotes (ICNP).
期刊介绍:
Antonie van Leeuwenhoek publishes papers on fundamental and applied aspects of microbiology. Topics of particular interest include: taxonomy, structure & development; biochemistry & molecular biology; physiology & metabolic studies; genetics; ecological studies; especially molecular ecology; marine microbiology; medical microbiology; molecular biological aspects of microbial pathogenesis and bioinformatics.