On the strong domination number of proper enhanced power graphs of finite groups

IF 0.6 3区 数学 Q3 MATHEMATICS
S. Bera
{"title":"On the strong domination number of proper enhanced power graphs of finite groups","authors":"S. Bera","doi":"10.1007/s10474-024-01477-0","DOIUrl":null,"url":null,"abstract":"<div><p>The enhanced power graph of a group <i>G</i> is a graph with vertex set <i>G</i>, where two distinct vertices <span>\\(\\mathbb{x}\\)</span> and <span>\\(\\mathbb{y}\\)</span> are adjacent if and only if there exists an element <span>\\(\\mathbb{w}\\)</span> in <i>G</i> such that both <span>\\(\\mathbb{x}\\)</span> and <span>\\(\\mathbb{y}\\)</span> are powers of <span>\\(\\mathbb{w}\\)</span>. To obtain the proper enhanced power graph, we consider the induced subgraph on the set <span>\\(G \\setminus D\\)</span>, where <i>D</i> represents the set of dominating vertices in the enhanced power graph. In this paper, we aim to determine the strong domination number of the proper enhanced power graphs of finite nilpotent groups.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 1","pages":"177 - 191"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01477-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The enhanced power graph of a group G is a graph with vertex set G, where two distinct vertices \(\mathbb{x}\) and \(\mathbb{y}\) are adjacent if and only if there exists an element \(\mathbb{w}\) in G such that both \(\mathbb{x}\) and \(\mathbb{y}\) are powers of \(\mathbb{w}\). To obtain the proper enhanced power graph, we consider the induced subgraph on the set \(G \setminus D\), where D represents the set of dominating vertices in the enhanced power graph. In this paper, we aim to determine the strong domination number of the proper enhanced power graphs of finite nilpotent groups.

论有限群适当增强幂图的强支配数
当且仅当在 G 中存在一个元素 \(\mathbb{w}\),使得 \(\mathbb{x}\)和 \(\mathbb{y}\)都是\(\mathbb{w}\)的幂时,两个不同的顶点 \(\mathbb{x}\)和 \(\mathbb{y}\)相邻。为了得到合适的增强幂图,我们要考虑集合 \(G \setminus D\) 上的诱导子图,其中 D 代表增强幂图中的主顶点集合。本文旨在确定有限零能群的适当增强幂图的强支配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信