Selection of hole transport layers through lattice mismatching using SCAPS-1D

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ritu,  Priyanka, Vinod Kumar, Ramesh Kumar, Fakir Chand
{"title":"Selection of hole transport layers through lattice mismatching using SCAPS-1D","authors":"Ritu,&nbsp; Priyanka,&nbsp;Vinod Kumar,&nbsp;Ramesh Kumar,&nbsp;Fakir Chand","doi":"10.1007/s11082-024-07447-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, a lead-free structure FTO/TiO<sub>2</sub>/NH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>NH<sub>3</sub>MnCl<sub>4</sub>/spiro-OMeTAD/Au is investigated using SCPAS-1D simulator. Initially, impact of absorber thickness on performance is thoroughly examined and found 900 nm thick absorber solar cell superiuses performer (open circuit voltage = 1.18 V, short circuit current density = 24.47 mA/cm<sup>2</sup>, fill factor = 70.88%, power conversion efficiency = 19.70%). Further, numerous inorganic materials are investigated through lattice mismatching ratio as substitute of organic hole transport layer and CZTSe as the most adequate materials for enhancing both efficiency and stability owing to minimal lattice mismatching, easy synthesis, efficient charge transport characteristics and superior chemical stability. Serval metallic materials like Cu, Fe, C, W, Ni and Pd are used as back contacts, are also examined with an aim of replacing the expensive Au and it is found that the proposed structure offers highest efficiency with Pd i.e., 31.60% (V<sub>oc</sub> = 1.13 V, J<sub>sc</sub> = 32.94 mA/cm<sup>2</sup> and FF = 84.55%). Additionally, the effect of defects density of absorber and temperature on device performance are also analysed and observed both factors adversely affects device performance. So, their values kept minimum for achieving optimal efficiency. The simulated results also illustrated in J-V and quantum efficiency (QE) curves. These optimised results obtained in present study are also compared with previously reported results. The results extracted from this simulation may play a potent role in the development of eco-friendly and efficient solar technology.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07447-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a lead-free structure FTO/TiO2/NH3(CH2)2NH3MnCl4/spiro-OMeTAD/Au is investigated using SCPAS-1D simulator. Initially, impact of absorber thickness on performance is thoroughly examined and found 900 nm thick absorber solar cell superiuses performer (open circuit voltage = 1.18 V, short circuit current density = 24.47 mA/cm2, fill factor = 70.88%, power conversion efficiency = 19.70%). Further, numerous inorganic materials are investigated through lattice mismatching ratio as substitute of organic hole transport layer and CZTSe as the most adequate materials for enhancing both efficiency and stability owing to minimal lattice mismatching, easy synthesis, efficient charge transport characteristics and superior chemical stability. Serval metallic materials like Cu, Fe, C, W, Ni and Pd are used as back contacts, are also examined with an aim of replacing the expensive Au and it is found that the proposed structure offers highest efficiency with Pd i.e., 31.60% (Voc = 1.13 V, Jsc = 32.94 mA/cm2 and FF = 84.55%). Additionally, the effect of defects density of absorber and temperature on device performance are also analysed and observed both factors adversely affects device performance. So, their values kept minimum for achieving optimal efficiency. The simulated results also illustrated in J-V and quantum efficiency (QE) curves. These optimised results obtained in present study are also compared with previously reported results. The results extracted from this simulation may play a potent role in the development of eco-friendly and efficient solar technology.

利用 SCAPS-1D 通过晶格错配选择空穴传输层
本文使用 SCPAS-1D 模拟器研究了无铅结构 FTO/TiO2/NH3(CH2)2NH3MnCl4/spiro-OMeTAD/Au。初步研究了吸收体厚度对性能的影响,发现 900 nm 厚的吸收体太阳能电池性能更优(开路电压 = 1.18 V,短路电流密度 = 24.47 mA/cm2,填充因子 = 70.88%,功率转换效率 = 19.70%)。此外,还通过晶格失配比研究了许多无机材料,以取代有机空穴传输层,其中 CZTSe 是最适合提高效率和稳定性的材料,因为它具有最小晶格失配、易于合成、高效电荷传输特性和出色的化学稳定性。为了取代昂贵的金,我们还研究了铜、铁、碳、瓦、镍和钯等薮金属材料作为背触点,结果发现,所提出的结构与钯相比具有最高的效率,即 31.60%(Voc = 1.13 V,Jsc = 32.94 mA/cm2 和 FF = 84.55%)。此外,还分析了吸收体的缺陷密度和温度对器件性能的影响。因此,为了达到最佳效率,应将这两个因素的值保持在最低水平。模拟结果还显示在 J-V 和量子效率 (QE) 曲线上。本研究获得的这些优化结果还与之前报告的结果进行了比较。从该模拟中提取的结果可能会在开发环保高效的太阳能技术中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信