New chemometrics-assisted spectrophotometric methods for simultaneous determination of co-formulated drugs montelukast, rupatadine, and desloratadine in their different dosage combinations
Marco M. Z. Sharkawi, Nehal F. Farid, Moataz H. Hassan, Said A. Hassan
{"title":"New chemometrics-assisted spectrophotometric methods for simultaneous determination of co-formulated drugs montelukast, rupatadine, and desloratadine in their different dosage combinations","authors":"Marco M. Z. Sharkawi, Nehal F. Farid, Moataz H. Hassan, Said A. Hassan","doi":"10.1186/s13065-024-01345-6","DOIUrl":null,"url":null,"abstract":"<div><p>Two accurate, precise and robust multivariate chemometric methods were developed for the simultaneous determination of montelukast sodium (MON), rupatadine fumarate (RUP) and desloratadine (DES). These methods provide a cost-effective alternative to chromatographic techniques by utilizing spectrophotometry in pharmaceutical quality control. The proposed approaches, partial least squares-1 (PLS-1) and artificial neural network (ANN), were optimized using genetic algorithm (GA) to select the most influential wavelengths, enhancing model performance. A five-level, three-factor design was employed to construct a calibration set with 25 mixtures, utilizing concentration ranges of 3–19, 5–25, and 4–20 µg.mL<sup>−1</sup> for MON, RUP, and DES, respectively. An independent validation set was employed to assess the performance of the models. GA significantly improved the PLS-1 and ANN models for RUP and DES, though minimal enhancement was observed for MON. These methods were successfully applied to the simultaneous quantification of the compounds in pharmaceutical formulations and proved useful as stability-indicating assays for RUP, given that DES is a known degradation product. The developed methods offer a valuable tool for impurity profiling and quality control in pharmaceutical analysis.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01345-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01345-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two accurate, precise and robust multivariate chemometric methods were developed for the simultaneous determination of montelukast sodium (MON), rupatadine fumarate (RUP) and desloratadine (DES). These methods provide a cost-effective alternative to chromatographic techniques by utilizing spectrophotometry in pharmaceutical quality control. The proposed approaches, partial least squares-1 (PLS-1) and artificial neural network (ANN), were optimized using genetic algorithm (GA) to select the most influential wavelengths, enhancing model performance. A five-level, three-factor design was employed to construct a calibration set with 25 mixtures, utilizing concentration ranges of 3–19, 5–25, and 4–20 µg.mL−1 for MON, RUP, and DES, respectively. An independent validation set was employed to assess the performance of the models. GA significantly improved the PLS-1 and ANN models for RUP and DES, though minimal enhancement was observed for MON. These methods were successfully applied to the simultaneous quantification of the compounds in pharmaceutical formulations and proved useful as stability-indicating assays for RUP, given that DES is a known degradation product. The developed methods offer a valuable tool for impurity profiling and quality control in pharmaceutical analysis.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.