{"title":"Unveiling the mechanism of CO2 electroreduction to C1 and C2 products of ordered double transition metal MXenes†","authors":"Romana Khanam, Syed Fozia and Manzoor Ahmad Dar","doi":"10.1039/D4SE00582A","DOIUrl":null,"url":null,"abstract":"<p >Design of highly active and durable electrocatalysts for CO<small><sub>2</sub></small> utilization and conversion into value-added chemicals in a green manner is central to addressing the global concerns of energy crisis and climate change for a sustainable future. Herein, we used rigorous first principles simulations to comprehensively screen and explore the CO<small><sub>2</sub></small> reduction activity of twelve different two-dimensional ordered double transition metal MXenes. Our results indicate that all twelve MXenes show metallic characteristics and can significantly activate CO<small><sub>2</sub></small> with strong binding energy (−1.60 to −2.40 eV). The van der Waals and solvation effects in general have little impact on the CO<small><sub>2</sub></small> binding energy; however, Hubbard correction is found to significantly influence the CO<small><sub>2</sub></small> binding on these catalysts. Electronic structure analysis reveals that charge redistribution from MXene catalysts to antibonding states of CO<small><sub>2</sub></small> results in strong hybridization between CO<small><sub>2</sub></small> orbitals and surface metal orbitals. The strong CO<small><sub>2</sub></small> binding is further confirmed by enhanced charge transfer (−1.17 to −1.65 |<em>e</em><small><sup>−</sup></small>|) from MXenes to the adsorbed CO<small><sub>2</sub></small> molecule. Simulations based on free energy pathways show that Mo<small><sub>2</sub></small>TaC<small><sub>2</sub></small> and Mo<small><sub>2</sub></small>TiC<small><sub>2</sub></small> possess superior catalytic activity for conversion of CO<small><sub>2</sub></small> into methanol and methane with very low limiting potential values of −0.35 and −0.39 V, respectively, whereas Mo<small><sub>2</sub></small>TaC<small><sub>2</sub></small> and Mo<small><sub>2</sub></small>VC<small><sub>2</sub></small> were found to display excellent performance for ethanol formation with record low limiting potentials of −0.32 V and −0.42 V, respectively. Further, the MXene-based catalysts Mo<small><sub>2</sub></small>TiC<small><sub>2</sub></small> and Mo<small><sub>2</sub></small>VC<small><sub>2</sub></small> were found to be highly selective for CO<small><sub>2</sub></small> reduction to methane and ethanol respectively. Extensive analysis based on linear scaling relations between the adsorption free energy of different reaction intermediates and limiting potential values highlights that the adsorption free energy for *CO<small><sub>2</sub></small> and *OCHO intermediates plays a critical role in deciding the overall activity of the MXene catalysts. We believe that the above findings can be highly important for the design of MXene-based catalysts for CO<small><sub>2</sub></small> conversion.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 23","pages":" 5595-5607"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00582a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Design of highly active and durable electrocatalysts for CO2 utilization and conversion into value-added chemicals in a green manner is central to addressing the global concerns of energy crisis and climate change for a sustainable future. Herein, we used rigorous first principles simulations to comprehensively screen and explore the CO2 reduction activity of twelve different two-dimensional ordered double transition metal MXenes. Our results indicate that all twelve MXenes show metallic characteristics and can significantly activate CO2 with strong binding energy (−1.60 to −2.40 eV). The van der Waals and solvation effects in general have little impact on the CO2 binding energy; however, Hubbard correction is found to significantly influence the CO2 binding on these catalysts. Electronic structure analysis reveals that charge redistribution from MXene catalysts to antibonding states of CO2 results in strong hybridization between CO2 orbitals and surface metal orbitals. The strong CO2 binding is further confirmed by enhanced charge transfer (−1.17 to −1.65 |e−|) from MXenes to the adsorbed CO2 molecule. Simulations based on free energy pathways show that Mo2TaC2 and Mo2TiC2 possess superior catalytic activity for conversion of CO2 into methanol and methane with very low limiting potential values of −0.35 and −0.39 V, respectively, whereas Mo2TaC2 and Mo2VC2 were found to display excellent performance for ethanol formation with record low limiting potentials of −0.32 V and −0.42 V, respectively. Further, the MXene-based catalysts Mo2TiC2 and Mo2VC2 were found to be highly selective for CO2 reduction to methane and ethanol respectively. Extensive analysis based on linear scaling relations between the adsorption free energy of different reaction intermediates and limiting potential values highlights that the adsorption free energy for *CO2 and *OCHO intermediates plays a critical role in deciding the overall activity of the MXene catalysts. We believe that the above findings can be highly important for the design of MXene-based catalysts for CO2 conversion.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.