Javier Fernández-González, Marta Rumayor, Jara Laso, Antonio Domínguez-Ramos and Angel Irabien
{"title":"Shaping the future of methanol production through carbon dioxide utilisation strategies†","authors":"Javier Fernández-González, Marta Rumayor, Jara Laso, Antonio Domínguez-Ramos and Angel Irabien","doi":"10.1039/D4SE01281J","DOIUrl":null,"url":null,"abstract":"<p >Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO<small><sub>2</sub></small> (CO<small><sub>2</sub></small> ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO<small><sub>2</sub></small> ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO<small><sub>2</sub></small> ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 23","pages":" 5492-5503"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01281j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO2 (CO2 ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO2 ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO2 ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.