Shaping the future of methanol production through carbon dioxide utilisation strategies†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Javier Fernández-González, Marta Rumayor, Jara Laso, Antonio Domínguez-Ramos and Angel Irabien
{"title":"Shaping the future of methanol production through carbon dioxide utilisation strategies†","authors":"Javier Fernández-González, Marta Rumayor, Jara Laso, Antonio Domínguez-Ramos and Angel Irabien","doi":"10.1039/D4SE01281J","DOIUrl":null,"url":null,"abstract":"<p >Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO<small><sub>2</sub></small> (CO<small><sub>2</sub></small> ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO<small><sub>2</sub></small> ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO<small><sub>2</sub></small> ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 23","pages":" 5492-5503"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01281j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO2 (CO2 ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO2 ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO2 ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH.

Abstract Image

通过二氧化碳利用战略打造甲醇生产的未来†。
欧洲要在 2050 年之前实现碳中和,首要任务是使用于运输的化学载体去碳化。欧盟最近发布的《可再生能源指令》(RED)强调了采用可再生燃料的紧迫性,并建立了推广和认证非生物可再生燃料(RFNBO)和再生碳燃料(RCFs)的框架。二氧化碳的电化学还原(CO2 ER)技术是生产电甲醇(e-MeOH)的一个很有前途的途径,它可以帮助包括交通在内的关键部门去化石化,并加强循环经济。然而,该技术能否与既有的两步催化加氢工艺相抗衡仍是个问题。我们将工艺模型与生命周期分析相结合,深入探讨了 CO2 ER 用于生产 e-MeOH 的技术潜力。我们的研究确定了在产品浓度(重量百分比超过 50%)、远动效率(超过 95%)和电池电压(低于 1.4 V)方面所需的关键进步。尽管不确定性评估表明,与传统方法相比,利用二氧化碳萃取器生产的 e-MeOH 可以显著减少碳排放和化石燃料消耗,但要达到氢基 e-MeOH 的性能,必须进一步提高关键性能参数 (KPP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信