Colloidal fluorine-doped ZnO quantum dots: the synergistic action of atomic doping and growth conditions directs fluorescence and photoactivity†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Noemi Gallucci, Alessandro Cangiano, Simone Russo, Giulio Pota, Rocco Di Girolamo, Eugénie Martinez, Nicolas Vaxelaire, Luigi Paduano and Giuseppe Vitiello
{"title":"Colloidal fluorine-doped ZnO quantum dots: the synergistic action of atomic doping and growth conditions directs fluorescence and photoactivity†","authors":"Noemi Gallucci, Alessandro Cangiano, Simone Russo, Giulio Pota, Rocco Di Girolamo, Eugénie Martinez, Nicolas Vaxelaire, Luigi Paduano and Giuseppe Vitiello","doi":"10.1039/D4QM00655K","DOIUrl":null,"url":null,"abstract":"<p >Quantum dots are nano-sized semiconductor particles showing peculiar optical properties due to the quantum confinement effect. They can efficiently absorb photons and generate excitons, leading to a stable fluorescence emission decisive to designing light-sensitive devices, or they can exert a pronounced photoactivity that favors their use in photocatalysis and photodynamic fields. Among the inorganic quantum dots, ZnO ones show unique optical and electronic properties together with low toxicity, good biocompatibility, and excellent photochemical stability. These features can be deeply influenced by tuning their size, surface, and/or bulk defects as well as by doping. Doping with anionic atoms represents an intriguing alternative to cationic metals to improve ZnO activity. Here, the emission behaviour and photoactivity of fluorine-doped ZnO quantum dots were simultaneously studied as a function of fluorine content and synthesis conditions (<em>e.g.</em>, wet-precipitation or solvothermal) adopted for the fabrication. The obtained results demonstrated that a low fluorine content (&lt;5 nominal at%) was pivotal to induce a significant enhancement of the relative emission quantum yield of quantum dots from the wet-precipitation route, while a high photocatalytic activity was guaranteed for those obtained by a solvothermal strategy due to the bulk distribution of atomic defects.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 23","pages":" 3973-3984"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/qm/d4qm00655k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00655k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum dots are nano-sized semiconductor particles showing peculiar optical properties due to the quantum confinement effect. They can efficiently absorb photons and generate excitons, leading to a stable fluorescence emission decisive to designing light-sensitive devices, or they can exert a pronounced photoactivity that favors their use in photocatalysis and photodynamic fields. Among the inorganic quantum dots, ZnO ones show unique optical and electronic properties together with low toxicity, good biocompatibility, and excellent photochemical stability. These features can be deeply influenced by tuning their size, surface, and/or bulk defects as well as by doping. Doping with anionic atoms represents an intriguing alternative to cationic metals to improve ZnO activity. Here, the emission behaviour and photoactivity of fluorine-doped ZnO quantum dots were simultaneously studied as a function of fluorine content and synthesis conditions (e.g., wet-precipitation or solvothermal) adopted for the fabrication. The obtained results demonstrated that a low fluorine content (<5 nominal at%) was pivotal to induce a significant enhancement of the relative emission quantum yield of quantum dots from the wet-precipitation route, while a high photocatalytic activity was guaranteed for those obtained by a solvothermal strategy due to the bulk distribution of atomic defects.

Abstract Image

氟掺杂的胶体氧化锌量子点:原子掺杂和生长条件的协同作用引导荧光和光活性†。
量子点是一种纳米级半导体粒子,由于量子约束效应而显示出奇特的光学特性。它们可以有效地吸收光子并产生激子,从而产生稳定的荧光发射,这对设计光敏器件具有决定性意义;它们还可以发挥明显的光活性,这有利于它们在光催化和光动力领域的应用。在无机量子点中,氧化锌具有独特的光学和电子特性、低毒性、良好的生物相容性和出色的光化学稳定性。这些特性可以通过调整其尺寸、表面和/或块体缺陷以及掺杂来实现。掺杂阴离子原子是阳离子金属之外的另一种提高氧化锌活性的方法。本文同时研究了掺氟氧化锌量子点的发射行为和光活性与氟含量和合成条件(如湿沉淀或溶热)的函数关系。研究结果表明,低氟含量(标称浓度为 5%)对于显著提高湿法沉淀法量子点的相对发射量子产率至关重要,而溶热法由于原子缺陷的大体分布,保证了量子点具有较高的光催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信