Dual-Layer Thin-Film Transistor Analysis and Design

John F. Wager;Jung Bae Kim;Daniel Severin;Zero Hung;Dong Kil Yim;Soo Young Choi;Marcus Bender
{"title":"Dual-Layer Thin-Film Transistor Analysis and Design","authors":"John F. Wager;Jung Bae Kim;Daniel Severin;Zero Hung;Dong Kil Yim;Soo Young Choi;Marcus Bender","doi":"10.1109/OJID.2024.3484415","DOIUrl":null,"url":null,"abstract":"A set of analytical equations is formulated for the analysis and design of a dual-layer thin-film transistor (TFT). For a given TFT structure, in which each channel layer thickness is specified, drain current is calculated as a function of drain and gate voltage (taking the source as ground) according to the Enz, Krummenacher, Vittoz (EKV) compact model. In order to implement this EKV-based equation, only one model parameter function is required, i.e., drift mobility as a function of gate voltage. Drift mobility is evaluated as a consequence of accumulation layer electrostatics assessment of the dual-layer TFT. In order to use the model, ten semiconductor physical properties must be specified, five for each semiconductor channel layer; namely, low-frequency (static) relative dielectric constant, free electron concentration, maximum (no trapping) mobility, and slope & intercept parameters characterizing the semiconductor trap density. Additionally, model implementation requires knowing two structure properties (insulator capacitance density and TFT width-to-length ratio), and one physical operating parameter (temperature). Simulation of dual-layer TFTs reveals that optimal mobility performance is obtained when the higher mobility semiconductor is positioned as the bottom channel layer, while the lower mobility semiconductor top channel layer is made as thin as is practicable.","PeriodicalId":100634,"journal":{"name":"IEEE Open Journal on Immersive Displays","volume":"1 ","pages":"214-221"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal on Immersive Displays","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10726664/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A set of analytical equations is formulated for the analysis and design of a dual-layer thin-film transistor (TFT). For a given TFT structure, in which each channel layer thickness is specified, drain current is calculated as a function of drain and gate voltage (taking the source as ground) according to the Enz, Krummenacher, Vittoz (EKV) compact model. In order to implement this EKV-based equation, only one model parameter function is required, i.e., drift mobility as a function of gate voltage. Drift mobility is evaluated as a consequence of accumulation layer electrostatics assessment of the dual-layer TFT. In order to use the model, ten semiconductor physical properties must be specified, five for each semiconductor channel layer; namely, low-frequency (static) relative dielectric constant, free electron concentration, maximum (no trapping) mobility, and slope & intercept parameters characterizing the semiconductor trap density. Additionally, model implementation requires knowing two structure properties (insulator capacitance density and TFT width-to-length ratio), and one physical operating parameter (temperature). Simulation of dual-layer TFTs reveals that optimal mobility performance is obtained when the higher mobility semiconductor is positioned as the bottom channel layer, while the lower mobility semiconductor top channel layer is made as thin as is practicable.
双层薄膜晶体管分析与设计
为分析和设计双层薄膜晶体管(TFT)制定了一套分析方程。对于给定的 TFT 结构(其中指定了每个沟道层的厚度),根据 Enz、Krummenacher、Vittoz(EKV)紧凑模型计算漏极电流作为漏极和栅极电压(将源极作为地极)的函数。为了实现这个基于 EKV 的方程,只需要一个模型参数函数,即漂移迁移率与栅极电压的函数关系。漂移迁移率是作为双层 TFT 积层静电评估的结果进行评估的。为了使用该模型,必须指定十个半导体物理特性,每个半导体沟道层五个;即低频(静态)相对介电常数、自由电子浓度、最大(无陷波)迁移率以及表征半导体陷波密度的斜率和截距参数。此外,模型的实现还需要了解两个结构属性(绝缘体电容密度和 TFT 宽长比)和一个物理工作参数(温度)。对双层 TFT 的仿真表明,如果将高迁移率半导体定位为底部沟道层,而将低迁移率半导体顶部沟道层做得尽可能薄,则可获得最佳迁移率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信