Modeling and Characterizing an Impedance-Type Micro Flow Sensor With Pulse Excitation

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Wei Xu;Wenlin Xiao;Ke Xiao
{"title":"Modeling and Characterizing an Impedance-Type Micro Flow Sensor With Pulse Excitation","authors":"Wei Xu;Wenlin Xiao;Ke Xiao","doi":"10.1109/LSENS.2024.3490983","DOIUrl":null,"url":null,"abstract":"This letter presents the modeling and characterization of a pulse-excited micro thermal flow sensor based on electrochemical impedance sensing. The proposed transient model reveals that the sensor output, measured as the impedance slope under pulse excitation, is almost one order of magnitude stronger at the downstream electrodes, as compared to the upstream pair. Consequently, the micro-electromechanical systems (MEMS) flow sensor is designed with an 8-μm-thick flexible structure and a 1.4 mm distance between the microheater and downstream electrodes. Testing results show that the fabricated impedance-type micro flow sensor achieves a maximum sensitivity of 8.9 (mΩ/s)/(μm/s) for the 1X PBS flow, while consuming less than 15.8 mW of heating power with a fluid flow up to 750 μm/s. Furthermore, the proposed theoretical model closely aligns with experimental results, confirming its potential as a valuable tool for optimizing impedance-type flow sensors that utilize pulse heating strategies to detect extremely low fluid flow in the future.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10742387/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents the modeling and characterization of a pulse-excited micro thermal flow sensor based on electrochemical impedance sensing. The proposed transient model reveals that the sensor output, measured as the impedance slope under pulse excitation, is almost one order of magnitude stronger at the downstream electrodes, as compared to the upstream pair. Consequently, the micro-electromechanical systems (MEMS) flow sensor is designed with an 8-μm-thick flexible structure and a 1.4 mm distance between the microheater and downstream electrodes. Testing results show that the fabricated impedance-type micro flow sensor achieves a maximum sensitivity of 8.9 (mΩ/s)/(μm/s) for the 1X PBS flow, while consuming less than 15.8 mW of heating power with a fluid flow up to 750 μm/s. Furthermore, the proposed theoretical model closely aligns with experimental results, confirming its potential as a valuable tool for optimizing impedance-type flow sensors that utilize pulse heating strategies to detect extremely low fluid flow in the future.
脉冲激励阻抗式微型流量传感器的建模与特性分析
这封信介绍了基于电化学阻抗传感技术的脉冲激励式微热流传感器的建模和特性分析。所提出的瞬态模型表明,在脉冲激励下以阻抗斜率测量的传感器输出与上游电极相比,下游电极的输出几乎强一个数量级。因此,微机电系统(MEMS)流量传感器的设计采用了 8 微米厚的柔性结构,微加热器和下游电极之间的距离为 1.4 毫米。测试结果表明,所制造的阻抗型微流量传感器在 1 倍 PBS 流量下的最大灵敏度为 8.9 (mΩ/s)/(μm/s) ,而在流体流量高达 750 μm/s 时的加热功率消耗不到 15.8 mW。此外,所提出的理论模型与实验结果非常吻合,证实了其作为一种有价值的工具的潜力,可用于优化阻抗型流量传感器,在未来利用脉冲加热策略检测极低的流体流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信