XBG: End-to-End Imitation Learning for Autonomous Behaviour in Human-Robot Interaction and Collaboration

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Carlos Cardenas-Perez;Giulio Romualdi;Mohamed Elobaid;Stefano Dafarra;Giuseppe L'Erario;Silvio Traversaro;Pietro Morerio;Alessio Del Bue;Daniele Pucci
{"title":"XBG: End-to-End Imitation Learning for Autonomous Behaviour in Human-Robot Interaction and Collaboration","authors":"Carlos Cardenas-Perez;Giulio Romualdi;Mohamed Elobaid;Stefano Dafarra;Giuseppe L'Erario;Silvio Traversaro;Pietro Morerio;Alessio Del Bue;Daniele Pucci","doi":"10.1109/LRA.2024.3495577","DOIUrl":null,"url":null,"abstract":"This letter presents XBG (eXteroceptive Behaviour Generation), a multimodal end-to-end Imitation Learning (IL) system for whole-body autonomous humanoid robots used in real-world Human-Robot Interaction (HRI) scenarios. The main contribution is an architecture for learning HRI behaviours using a data-driven approach. A diverse dataset is collected via teleoperation, covering multiple HRI scenarios, such as handshaking, handwaving, payload reception, walking, and walking with a payload. After synchronizing, filtering, and transforming the data, we show how to train the presented Deep Neural Networks (DNN), integrating exteroceptive and proprioceptive information to help the robot understand both its environment and its actions. The robot takes in sequences of images (RGB and depth) and joints state information to react accordingly. By fusing multimodal signals over time, the model enables autonomous capabilities in a robotic platform. The models are evaluated based on the success rates in the mentioned HRI scenarios and they are deployed on the ergoCub humanoid robot. XBG achieves success rates between 60% and 100% even when tested in unseen environments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11617-11624"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750285/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents XBG (eXteroceptive Behaviour Generation), a multimodal end-to-end Imitation Learning (IL) system for whole-body autonomous humanoid robots used in real-world Human-Robot Interaction (HRI) scenarios. The main contribution is an architecture for learning HRI behaviours using a data-driven approach. A diverse dataset is collected via teleoperation, covering multiple HRI scenarios, such as handshaking, handwaving, payload reception, walking, and walking with a payload. After synchronizing, filtering, and transforming the data, we show how to train the presented Deep Neural Networks (DNN), integrating exteroceptive and proprioceptive information to help the robot understand both its environment and its actions. The robot takes in sequences of images (RGB and depth) and joints state information to react accordingly. By fusing multimodal signals over time, the model enables autonomous capabilities in a robotic platform. The models are evaluated based on the success rates in the mentioned HRI scenarios and they are deployed on the ergoCub humanoid robot. XBG achieves success rates between 60% and 100% even when tested in unseen environments.
XBG:端到端模仿学习,实现人机交互与协作中的自主行为
这封信介绍了 XBG(eXteroceptive Behaviour Generation),这是一种多模态端到端模仿学习(IL)系统,适用于真实世界人机交互(HRI)场景中使用的全身自主仿人机器人。该系统的主要贡献在于采用数据驱动方法学习 HRI 行为的架构。通过远程操作收集了一个多样化的数据集,涵盖多种人机交互场景,如握手、挥手、接收有效载荷、行走和带着有效载荷行走。在对数据进行同步、过滤和转换后,我们展示了如何训练所呈现的深度神经网络(DNN),将外部感知和本体感知信息整合在一起,帮助机器人理解其环境和行动。机器人接收图像序列(RGB 和深度)和关节状态信息,并做出相应反应。通过长期融合多模态信号,该模型实现了机器人平台的自主能力。根据上述 HRI 场景中的成功率对模型进行了评估,并将其部署在 ergoCub 人形机器人上。即使在未知环境中进行测试,XBG 的成功率也在 60% 到 100% 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信