Delay Guarantees for a Swarm of Mobile Sensors in Safety-Critical Applications

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Orangel Azuaje;Ana Aguiar
{"title":"Delay Guarantees for a Swarm of Mobile Sensors in Safety-Critical Applications","authors":"Orangel Azuaje;Ana Aguiar","doi":"10.1109/OJCOMS.2024.3491947","DOIUrl":null,"url":null,"abstract":"Swarms of mobile wireless-connected sensors are increasingly deployed for applications such as monitoring, surveillance, and safety-critical operations. Quantifying end-to-end (e2e) delay performance guarantees in these scenarios is paramount. In this paper, we present a theoretical approach using Stochastic Network Calculus (SNC) with Moment Generating Functions (MGFs) to characterize e2e delay bounds in Mobile Wireless Sensor Networks (MWSNs). Our study focuses on a network composed of two segments: the first segment includes multiple nodes connected via a contention-based channel using the Distributed Coordination Function (DCF), while the second segment consists of a link prone to disconnections due to the mobility of nodes in the first segment. We model the first segment by calculating the expected per-packet service time in a non-saturated homogeneous contention channel and the second segment using a Discrete Time Markov Chain (DTMC). Initially, we derive a mathematical expression that correlates the offered load with the saturation status of each node’s queue in a non-saturated contention channel with homogeneous nodes. We then provide numerical e2e delay bounds for an illustrative example of a first responder network, quantifying the effects of non-saturated traffic, communication range on the head-sink link, and scheduling algorithms across different network sizes. Finally, we compare the derived e2e delay bounds with network simulations to assess their accuracy and reliability.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7147-7159"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742911","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10742911/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Swarms of mobile wireless-connected sensors are increasingly deployed for applications such as monitoring, surveillance, and safety-critical operations. Quantifying end-to-end (e2e) delay performance guarantees in these scenarios is paramount. In this paper, we present a theoretical approach using Stochastic Network Calculus (SNC) with Moment Generating Functions (MGFs) to characterize e2e delay bounds in Mobile Wireless Sensor Networks (MWSNs). Our study focuses on a network composed of two segments: the first segment includes multiple nodes connected via a contention-based channel using the Distributed Coordination Function (DCF), while the second segment consists of a link prone to disconnections due to the mobility of nodes in the first segment. We model the first segment by calculating the expected per-packet service time in a non-saturated homogeneous contention channel and the second segment using a Discrete Time Markov Chain (DTMC). Initially, we derive a mathematical expression that correlates the offered load with the saturation status of each node’s queue in a non-saturated contention channel with homogeneous nodes. We then provide numerical e2e delay bounds for an illustrative example of a first responder network, quantifying the effects of non-saturated traffic, communication range on the head-sink link, and scheduling algorithms across different network sizes. Finally, we compare the derived e2e delay bounds with network simulations to assess their accuracy and reliability.
安全关键型应用中移动传感器群的延迟保证
在监控、监视和安全关键操作等应用中,越来越多地部署了移动无线连接传感器群。量化这些场景中的端到端(e2e)延迟性能保证至关重要。在本文中,我们提出了一种理论方法,利用随机网络微积分(SNC)和矩生成函数(MGF)来描述移动无线传感器网络(MWSN)中的端到端(e2e)延迟界限。我们的研究重点是由两个网段组成的网络:第一个网段包括通过使用分布式协调函数(DCF)的基于争用的信道连接的多个节点,而第二个网段包括由于第一个网段中节点的移动性而容易断开的链路。我们通过计算非饱和同质竞争信道中的预期每包服务时间对第一段进行建模,并使用离散时间马尔可夫链(DTMC)对第二段进行建模。首先,我们推导出一个数学表达式,它将提供的负载与同质节点非饱和竞争信道中每个节点队列的饱和状态相关联。然后,我们提供了第一响应者网络示例的 e2e 延迟数值边界,量化了非饱和流量、首端-下沉链路上的通信范围以及不同网络规模的调度算法的影响。最后,我们将得出的 e2e 延迟边界与网络模拟进行比较,以评估其准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信