Room-Temperature Synthesis of a Fluorine-Functionalized Nanoporous Organic Polymer for Highly Efficient SF6 Adsorption and Separation

IF 5.1 Q1 POLYMER SCIENCE
Sihan Tong, Lu Yao, Qilin Wang, Jiangli Zhu, Zefeng Wang and Jun Yan*, 
{"title":"Room-Temperature Synthesis of a Fluorine-Functionalized Nanoporous Organic Polymer for Highly Efficient SF6 Adsorption and Separation","authors":"Sihan Tong,&nbsp;Lu Yao,&nbsp;Qilin Wang,&nbsp;Jiangli Zhu,&nbsp;Zefeng Wang and Jun Yan*,&nbsp;","doi":"10.1021/acsmacrolett.4c0055910.1021/acsmacrolett.4c00559","DOIUrl":null,"url":null,"abstract":"<p >Sulfur hexafluoride (SF<sub>6</sub>) is widely used in the power industry and significantly contributes to the greenhouse effect, necessitating the development of efficient materials for SF<sub>6</sub> capture, particularly fluorine-containing materials. However, existing fluorine-containing materials often require complex monomers and high synthesis temperatures. Herein, we report the synthesis of a fluorine-functionalized carbazole-based nanoporous organic polymer (CNOP-7) at room temperature, using commercially available 4,4′-bis(9<i>H</i>-carbazole-9-yl)-1,1′-biphenyl and 1,1,1-trifluoroacetone. CNOP-7 contains 14.7% fluorine atoms and exhibits a high specific surface area of 1270 m<sup>2</sup>·g<sup>–1</sup>, demonstrating excellent SF<sub>6</sub> adsorption and separation performance. The SF<sub>6</sub>/N<sub>2</sub> selectivity of CNOP-7 reaches 107 at 273 K and 73 at 298 K. Furthermore, dynamic breakthrough experiments confirm that CNOP-7 can efficiently and repeatedly separate SF<sub>6</sub> from SF<sub>6</sub>/N<sub>2</sub> mixtures. Molecular simulations reveal the mechanism behind its efficient separation. This work offers fresh perspectives on the development and fabrication of adsorbents for efficient SF<sub>6</sub> sequestration.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"13 11","pages":"1469–1475 1469–1475"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfur hexafluoride (SF6) is widely used in the power industry and significantly contributes to the greenhouse effect, necessitating the development of efficient materials for SF6 capture, particularly fluorine-containing materials. However, existing fluorine-containing materials often require complex monomers and high synthesis temperatures. Herein, we report the synthesis of a fluorine-functionalized carbazole-based nanoporous organic polymer (CNOP-7) at room temperature, using commercially available 4,4′-bis(9H-carbazole-9-yl)-1,1′-biphenyl and 1,1,1-trifluoroacetone. CNOP-7 contains 14.7% fluorine atoms and exhibits a high specific surface area of 1270 m2·g–1, demonstrating excellent SF6 adsorption and separation performance. The SF6/N2 selectivity of CNOP-7 reaches 107 at 273 K and 73 at 298 K. Furthermore, dynamic breakthrough experiments confirm that CNOP-7 can efficiently and repeatedly separate SF6 from SF6/N2 mixtures. Molecular simulations reveal the mechanism behind its efficient separation. This work offers fresh perspectives on the development and fabrication of adsorbents for efficient SF6 sequestration.

Abstract Image

用于高效吸附和分离 SF6 的氟官能化纳米多孔有机聚合物的室温合成
六氟化硫(SF6)被广泛应用于电力行业,严重加剧了温室效应,因此有必要开发用于捕获 SF6 的高效材料,尤其是含氟材料。然而,现有的含氟材料通常需要复杂的单体和较高的合成温度。在此,我们报告了利用市售的 4,4′-双(9H-咔唑-9-基)-1,1′-联苯和 1,1,1-三氟丙酮在室温下合成氟功能化咔唑基纳米多孔有机聚合物(CNOP-7)的情况。CNOP-7 含有 14.7% 的氟原子,比表面积高达 1270 m2-g-1,具有出色的 SF6 吸附和分离性能。CNOP-7 的 SF6/N2 选择性在 273 K 时达到 107,在 298 K 时达到 73。此外,动态突破实验证实,CNOP-7 可从 SF6/N2 混合物中高效、反复地分离 SF6。分子模拟揭示了其高效分离背后的机理。这项研究为开发和制造高效封存 SF6 的吸附剂提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信