{"title":"Effects of a Mechanically Interlocked Structure on Ionic Conductivity in Polyrotaxane-Based Polymer Electrolytes","authors":"Bitgaram Kim, Eunji Lee and Ji-Hun Seo*, ","doi":"10.1021/acsmacrolett.4c0048010.1021/acsmacrolett.4c00480","DOIUrl":null,"url":null,"abstract":"<p >Polyrotaxane (PR) is a mechanically interlocked polymer (MIP) utilized as an electrolyte because of its distinctive property of dynamic molecular mobility. While numerous studies have concentrated on modifying external properties to decrease high crystallinity, few have explored the control of intrinsic properties. This study examines the crystalline properties and molecular mobility of PR-based electrolytes, along with their effects on ionic conductivity, by manipulating intrinsic properties. By systematically varying the inclusion ratio, we demonstrate that lower inclusion ratios lead to reduced crystallinity, enhancing molecular mobility. Consequently, 100PRE exhibits decreased crystallinity due to lower aggregation probabilities of α-cyclodextrins (α-CDs), longer <i>T</i><sub>2</sub> relaxation times (0.215 s), and higher ionic conductivity (3.4 × 10<sup>–3</sup> S cm<sup>–1</sup> at 25 °C).</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"13 11","pages":"1463–1468 1463–1468"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polyrotaxane (PR) is a mechanically interlocked polymer (MIP) utilized as an electrolyte because of its distinctive property of dynamic molecular mobility. While numerous studies have concentrated on modifying external properties to decrease high crystallinity, few have explored the control of intrinsic properties. This study examines the crystalline properties and molecular mobility of PR-based electrolytes, along with their effects on ionic conductivity, by manipulating intrinsic properties. By systematically varying the inclusion ratio, we demonstrate that lower inclusion ratios lead to reduced crystallinity, enhancing molecular mobility. Consequently, 100PRE exhibits decreased crystallinity due to lower aggregation probabilities of α-cyclodextrins (α-CDs), longer T2 relaxation times (0.215 s), and higher ionic conductivity (3.4 × 10–3 S cm–1 at 25 °C).
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.