Electrospun Poly(vinylidene fluoride) Nanocomposites with Ionic Liquid Functionalized Graphene Nanoplatelets by a Noncovalent Method for Piezoresistive Pressure Sensor Applications

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Lucas Simon, Sébastien Livi, Guilherme M.O. Barra and Claudia Merlini*, 
{"title":"Electrospun Poly(vinylidene fluoride) Nanocomposites with Ionic Liquid Functionalized Graphene Nanoplatelets by a Noncovalent Method for Piezoresistive Pressure Sensor Applications","authors":"Lucas Simon,&nbsp;Sébastien Livi,&nbsp;Guilherme M.O. Barra and Claudia Merlini*,&nbsp;","doi":"10.1021/acsomega.4c0645210.1021/acsomega.4c06452","DOIUrl":null,"url":null,"abstract":"<p >Piezoresistive pressure sensors have been prepared by the electrospinning of poly(vinylidene fluoride) (PVDF) containing graphene nanoplatelets (GNP) functionalized using 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM(OTf)) ionic liquid (IL). Optical microscopy demonstrated that the functionalized GNP powder presented particles with a smaller lateral size. The obtained mats were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, electrical resistivity using two and four probes, and electromechanical testing with up to 32 load–unload cycles. Functionalization with BMIM(OTf) resulted in a higher PVDF electroactive phase. Electrospun mats obtained without the IL displayed a signal comparable to noise, while mats obtained with the BMIM(OTf) functionalized GNP displayed a clear signal, indicating that the IL helped with the dispersion of GNP on the PVDF matrix. Electrospun mats containing 1.0%m functionalized GNP presented the best performance among the evaluated samples, presenting low hysteresis and a lower distribution of the read values especially in the working range of 0 to 250 kPa. The piezoresistive behavior of the sample was tested under 32 load–unload cycles, remaining stable. Higher ranges of axial load resulted in the rupture of the fibers and swift degradation of the piezoresistive signal under a high number of cycles. A simple load cell was assembled to demonstrate the capacity of the membranes to act as piezoresistive compressive sensors capable of detecting the pressing of a human finger and differentiating between applied weights.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 46","pages":"46104–46116 46104–46116"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06452","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c06452","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoresistive pressure sensors have been prepared by the electrospinning of poly(vinylidene fluoride) (PVDF) containing graphene nanoplatelets (GNP) functionalized using 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM(OTf)) ionic liquid (IL). Optical microscopy demonstrated that the functionalized GNP powder presented particles with a smaller lateral size. The obtained mats were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, electrical resistivity using two and four probes, and electromechanical testing with up to 32 load–unload cycles. Functionalization with BMIM(OTf) resulted in a higher PVDF electroactive phase. Electrospun mats obtained without the IL displayed a signal comparable to noise, while mats obtained with the BMIM(OTf) functionalized GNP displayed a clear signal, indicating that the IL helped with the dispersion of GNP on the PVDF matrix. Electrospun mats containing 1.0%m functionalized GNP presented the best performance among the evaluated samples, presenting low hysteresis and a lower distribution of the read values especially in the working range of 0 to 250 kPa. The piezoresistive behavior of the sample was tested under 32 load–unload cycles, remaining stable. Higher ranges of axial load resulted in the rupture of the fibers and swift degradation of the piezoresistive signal under a high number of cycles. A simple load cell was assembled to demonstrate the capacity of the membranes to act as piezoresistive compressive sensors capable of detecting the pressing of a human finger and differentiating between applied weights.

采用非共价方法电纺聚偏氟乙烯与离子液体功能化石墨烯纳米片纳米复合材料,用于压阻压力传感器应用
利用 1-丁基-3-甲基咪唑三氟甲磺酸盐(BMIM(OTf))离子液体(IL)对含有石墨烯纳米颗粒(GNP)的聚偏二氟乙烯(PVDF)进行电纺丝,制备了压阻压力传感器。光学显微镜显示,功能化 GNP 粉末呈现出横向尺寸较小的颗粒。扫描电子显微镜、傅立叶变换红外光谱、能量色散 X 射线光谱、X 射线衍射、差示扫描量热法、使用两个和四个探头的电阻率以及多达 32 次加载-卸载循环的机电测试对所获得的毡进行了表征。BMIM(OTf) 的官能化产生了更高的 PVDF 电活性相。不含 IL 的电纺毡显示的信号与噪音相当,而使用 BMIM(OTf) 功能化 GNP 的电纺毡则显示出清晰的信号,这表明 IL 有助于 GNP 在 PVDF 基质上的分散。在评估的样品中,含有 1.0%m 功能化 GNP 的电纺毡性能最好,尤其是在 0 至 250 kPa 的工作范围内,呈现出低滞后和较低的读值分布。在 32 次加载-卸载循环测试中,样品的压阻行为保持稳定。更高的轴向载荷范围导致纤维断裂,压阻信号在高循环次数下迅速衰减。我们组装了一个简单的称重传感器,以展示薄膜作为压阻压缩传感器的能力,它能够检测人的手指按压情况并区分施加的重量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信