Yu He , Qili Zhou , Wen Wang , Zitan Yang , Zhi Liang , Zhangcheng Li , Honghao Cao , Chong Hou
{"title":"Polyimide foams with high porosity in the micrometer range prepared by scrape foaming for thermal insulation","authors":"Yu He , Qili Zhou , Wen Wang , Zitan Yang , Zhi Liang , Zhangcheng Li , Honghao Cao , Chong Hou","doi":"10.1016/j.cej.2024.157766","DOIUrl":null,"url":null,"abstract":"<div><div>Polyimide (PI) foams possess excellent mechanical properties and high-temperature resistance, which present significant utility in the aerospace, transportation, and microelectronics industries. The microstructure of PI foam, specifically the pore size and porosity, significantly influences its physical and mechanical properties. However, achieving both high porosity and small pore size simultaneously is greatly challenging for PI foams, especially via the foaming method. Here, we report PI foams with mean pore size of 98.1 μm and porosity of 92 % using a one-step scrape foaming method. The scraping thickness is found to be key to adjusting the pore size of the foam due to the interface effect in the initial stage, and maintaining optimal air pressure and low temperature allows slow bubble growth without bursting or merging, resulting in PI foams with high porosity and small pore size. The PI foam we fabricated exhibits excellent thermal insulating performance, with a low thermal conductivity of 20 mW/m∙K. The scrape foaming method provides an efficient and low-cost strategy for the preparation of PI foams with a tunable porous structure and is expected to find a variety of applications in thermal insulation and environmental protection.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"502 ","pages":"Article 157766"},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138589472409257X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polyimide (PI) foams possess excellent mechanical properties and high-temperature resistance, which present significant utility in the aerospace, transportation, and microelectronics industries. The microstructure of PI foam, specifically the pore size and porosity, significantly influences its physical and mechanical properties. However, achieving both high porosity and small pore size simultaneously is greatly challenging for PI foams, especially via the foaming method. Here, we report PI foams with mean pore size of 98.1 μm and porosity of 92 % using a one-step scrape foaming method. The scraping thickness is found to be key to adjusting the pore size of the foam due to the interface effect in the initial stage, and maintaining optimal air pressure and low temperature allows slow bubble growth without bursting or merging, resulting in PI foams with high porosity and small pore size. The PI foam we fabricated exhibits excellent thermal insulating performance, with a low thermal conductivity of 20 mW/m∙K. The scrape foaming method provides an efficient and low-cost strategy for the preparation of PI foams with a tunable porous structure and is expected to find a variety of applications in thermal insulation and environmental protection.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.