Simultaneous effects of nanoscale zero-valent iron on wastewater decontamination and energy generation: Mechanisms of sulfamethoxazole degradation and methanogenesis

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Lingyun Zhou, Jibin Li, Xingcheng Lu, Weiming Zhang, Bingcai Pan, Ming Hua
{"title":"Simultaneous effects of nanoscale zero-valent iron on wastewater decontamination and energy generation: Mechanisms of sulfamethoxazole degradation and methanogenesis","authors":"Lingyun Zhou, Jibin Li, Xingcheng Lu, Weiming Zhang, Bingcai Pan, Ming Hua","doi":"10.1016/j.jhazmat.2024.136569","DOIUrl":null,"url":null,"abstract":"The presence of sulfamethoxazole (SMX) can adversely affect the anaerobic digestion process, reducing the efficiency of wastewater treatment and methane production. In this study, the addition of exogenous nanoscale zero-valent iron (nZVI) enhanced the efficient treatment of SMX and promoted the energy recovery from antibiotic wastewater. The results showed that the removal of SMX in the reactor pairs with 0.5 g/L nZVI increased by 20 %, 35 %, and 27 %, and the methane production increased by 21.6 %, 40.9 %, and 26.6 %, respectively, compared with the control reactor at different SMX influent concentrations (50, 100, and 200 mg/L). The microbial community distribution indicated that the nZVI facilitated efficient cooperation between acid-producing and methanogens by regulating the relative abundance of functional bacteria, such as <em>Anaerolinea</em> and <em>Methanothrix</em>. Meanwhile, nZVI can effectively facilitate the direct interspecies electron transfer (DIET) and enhance electron transport system (ETS) activity by functioning as a conductive particle and increasing the abundance of genes related to cytochrome C (Cyt C) and type IV pili. In addition, nZVI can reduce the risk of antibiotic resistance genes (ARGs) transmission by decreasing the relative abundance of ARGs. In summary, this study could provide new insights and theoretical support for efficient anaerobic bioremediation and energy recovery of antibiotic wastewater containing SMX.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"13 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136569","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of sulfamethoxazole (SMX) can adversely affect the anaerobic digestion process, reducing the efficiency of wastewater treatment and methane production. In this study, the addition of exogenous nanoscale zero-valent iron (nZVI) enhanced the efficient treatment of SMX and promoted the energy recovery from antibiotic wastewater. The results showed that the removal of SMX in the reactor pairs with 0.5 g/L nZVI increased by 20 %, 35 %, and 27 %, and the methane production increased by 21.6 %, 40.9 %, and 26.6 %, respectively, compared with the control reactor at different SMX influent concentrations (50, 100, and 200 mg/L). The microbial community distribution indicated that the nZVI facilitated efficient cooperation between acid-producing and methanogens by regulating the relative abundance of functional bacteria, such as Anaerolinea and Methanothrix. Meanwhile, nZVI can effectively facilitate the direct interspecies electron transfer (DIET) and enhance electron transport system (ETS) activity by functioning as a conductive particle and increasing the abundance of genes related to cytochrome C (Cyt C) and type IV pili. In addition, nZVI can reduce the risk of antibiotic resistance genes (ARGs) transmission by decreasing the relative abundance of ARGs. In summary, this study could provide new insights and theoretical support for efficient anaerobic bioremediation and energy recovery of antibiotic wastewater containing SMX.

Abstract Image

纳米级零价铁对废水净化和能源生成的同时效应:磺胺甲噁唑降解和甲烷生成机制
磺胺甲噁唑(SMX)的存在会对厌氧消化过程产生不利影响,降低废水处理效率和甲烷产量。在这项研究中,外源纳米级零价铁(nZVI)的加入提高了 SMX 的处理效率,并促进了抗生素废水的能量回收。结果表明,在不同的 SMX 进水浓度(50、100 和 200 mg/L)下,与对照反应器相比,添加 0.5 g/L nZVI 的反应器对 SMX 的去除率分别提高了 20%、35% 和 27%,甲烷产量分别提高了 21.6%、40.9% 和 26.6%。微生物群落分布表明,nZVI 通过调节 Anaerolinea 和 Methanothrix 等功能菌的相对丰度,促进了产酸菌和甲烷菌之间的有效合作。同时,nZVI 还能有效促进种间直接电子传递(DIET),并通过充当导电粒子和增加细胞色素 C(Cyt C)及 IV 型纤毛相关基因的丰度来增强电子传递系统(ETS)的活性。此外,nZVI 还能通过降低 ARGs 的相对丰度来降低抗生素耐药基因(ARGs)传播的风险。总之,本研究可为含有 SMX 的抗生素废水的高效厌氧生物修复和能量回收提供新的见解和理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信