{"title":"Molecular Characteristics of Organic Matters in PM2.5 Associated with Upregulation of Respiratory Virus Infection in Vitro","authors":"Juying Lin, Wei Sun, Shuyi Peng, Yaohao Hu, Guohua Zhang, Wei Song, Bin Jiang, Yuhong Liao, Chenglei Pei, Jinpu Zhang, Jianwei Dai, Xinming Wang, Ping’an Peng, Xinhui Bi","doi":"10.1016/j.jhazmat.2024.136583","DOIUrl":null,"url":null,"abstract":"The extent to which organic matters (OM) in PM<sub>2.5</sub> affect virus infections and the key organic molecules involved in this process remain unclear. Herein, this study utilized ultra-high resolution mass spectrometry coupled with <em>in vitro</em> experiments to identify the organic molecules associated with respiratory virus infection for the first time. Water-soluble organic matters (WSOM) and water-insoluble organic matters (WIOM) were separated from PM<sub>2.5</sub> samples collected at the urban area of Guangzhou, China. Their molecular compositions were analyzed using Fourier transform ion cyclotron resonance mass spectrometry. Subsequently, <em>in vitro</em> experiments were conducted to explore the impact of WSOM and WIOM exposure on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudo-virus infection in A549 cells. Results revealed that WSOM and WIOM respectively promoted 1.7 to 2.1-fold and 1.9 to 3.5-fold upregulation of SARS-CoV-2 pseudo-virus infection in a concentration-dependent manner (at 25 to 100<!-- --> <!-- -->μg<!-- --> <!-- -->mL<sup>-1</sup>) compared to the virus-only control group. Partial least squares model analysis indicated that the increased virus infection was likely related to phthalate ester and nitro-aromatic molecules in WSOM, as well as Lipid<sub>C</sub> molecules with aliphatic and olefinic structures in WIOM. Interestingly, the molecules responsible for upregulating SARS-CoV-2 receptor angiotensin-converting enzyme 2 (<em>ACE2</em>) expression and virus infection differed. Thus, it was concluded that <em>ACE2</em> upregulation alone may not fully elucidate the mechanisms underlying increased susceptibility to virus infection. The findings highlight the critical importance of aromatic and lipid molecules found in OM in relation to respiratory virus infection.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"39 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136583","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The extent to which organic matters (OM) in PM2.5 affect virus infections and the key organic molecules involved in this process remain unclear. Herein, this study utilized ultra-high resolution mass spectrometry coupled with in vitro experiments to identify the organic molecules associated with respiratory virus infection for the first time. Water-soluble organic matters (WSOM) and water-insoluble organic matters (WIOM) were separated from PM2.5 samples collected at the urban area of Guangzhou, China. Their molecular compositions were analyzed using Fourier transform ion cyclotron resonance mass spectrometry. Subsequently, in vitro experiments were conducted to explore the impact of WSOM and WIOM exposure on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudo-virus infection in A549 cells. Results revealed that WSOM and WIOM respectively promoted 1.7 to 2.1-fold and 1.9 to 3.5-fold upregulation of SARS-CoV-2 pseudo-virus infection in a concentration-dependent manner (at 25 to 100 μg mL-1) compared to the virus-only control group. Partial least squares model analysis indicated that the increased virus infection was likely related to phthalate ester and nitro-aromatic molecules in WSOM, as well as LipidC molecules with aliphatic and olefinic structures in WIOM. Interestingly, the molecules responsible for upregulating SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression and virus infection differed. Thus, it was concluded that ACE2 upregulation alone may not fully elucidate the mechanisms underlying increased susceptibility to virus infection. The findings highlight the critical importance of aromatic and lipid molecules found in OM in relation to respiratory virus infection.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.