{"title":"A type of polyaniline with H+ reservoirs for dual-mechanism NH4+ and I3−/I2 storage","authors":"Xiaodong Zhi, Jiuzeng Jin, Ruiying Zhang, Jia Zheng, Changwei Li, Zhongmin Feng, Yun Wang, Ting Sun","doi":"10.1016/j.cej.2024.157804","DOIUrl":null,"url":null,"abstract":"The construction of aqueous rechargeable ammonium-iodine batteries (AIBs) must be eye-catching by combining the unique properties of ammonium ion (NH<sub>4</sub><sup>+</sup>) and the special redox mechanism of iodine. Polyaniline (PANI) as a conductive polymer is a potential cathode material for aqueous NH<sub>4</sub><sup>+</sup> batteries. However, the proton (H<sup>+</sup>) escape of amino group (─NH─) in the oxidation process of PANI cannot realize the reversible reduction reaction from full-oxidized imine (─N═) to ─NH─. In this work, polyaniline with H<sup>+</sup> reservoirs (PANI-H<sup>+</sup>) was successfully prepared by electrodeposition for the NH<sub>4</sub><sup>+</sup> and I<sub>3</sub><sup>−</sup>/I<sub>2</sub> storage. Interestingly, ─SO<sub>3</sub><sup>−</sup>H<sup>+</sup> groups as H<sup>+</sup> reservoirs in 1, 5-Naphthalenedisulfonic acid (1, 5-NDSA) can provide H<sup>+</sup> for the reduction of ═N─ to ─NH─, thus achieving the reversible redox process of PANI-H<sup>+</sup>. Therefore, PANI-H<sup>+</sup> electrode exhibited excellent discharge capacity (299.3 mAh/g and 126.7mAh/g at the current density of 1 A/g and 10 A/g, respectively), and good stability of long-term cycles (≈100 % capacity retention after 1000 cycles at the current density of 10 A/g) in (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> + I<sub>3</sub><sup>−</sup> electrolyte. A series of spectroscopy analyses indicated the dual storage mechanism of NH<sub>4</sub><sup>+</sup> (de)intercalation and interfacial redox of I<sub>3</sub><sup>−</sup>/I<sub>2</sub>. Finally, aqueous ammonium-iodine full cell (PTCDA|(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> + I<sub>3</sub><sup>−</sup>|PANI-H<sup>+</sup>) was constructed and presented satisfactory electrochemical performances. This work provides guidance to construct promising AIBs.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"11 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157804","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of aqueous rechargeable ammonium-iodine batteries (AIBs) must be eye-catching by combining the unique properties of ammonium ion (NH4+) and the special redox mechanism of iodine. Polyaniline (PANI) as a conductive polymer is a potential cathode material for aqueous NH4+ batteries. However, the proton (H+) escape of amino group (─NH─) in the oxidation process of PANI cannot realize the reversible reduction reaction from full-oxidized imine (─N═) to ─NH─. In this work, polyaniline with H+ reservoirs (PANI-H+) was successfully prepared by electrodeposition for the NH4+ and I3−/I2 storage. Interestingly, ─SO3−H+ groups as H+ reservoirs in 1, 5-Naphthalenedisulfonic acid (1, 5-NDSA) can provide H+ for the reduction of ═N─ to ─NH─, thus achieving the reversible redox process of PANI-H+. Therefore, PANI-H+ electrode exhibited excellent discharge capacity (299.3 mAh/g and 126.7mAh/g at the current density of 1 A/g and 10 A/g, respectively), and good stability of long-term cycles (≈100 % capacity retention after 1000 cycles at the current density of 10 A/g) in (NH4)2SO4 + I3− electrolyte. A series of spectroscopy analyses indicated the dual storage mechanism of NH4+ (de)intercalation and interfacial redox of I3−/I2. Finally, aqueous ammonium-iodine full cell (PTCDA|(NH4)2SO4 + I3−|PANI-H+) was constructed and presented satisfactory electrochemical performances. This work provides guidance to construct promising AIBs.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.