Measurements of intra-diffusion coefficients for gaseous binary mixtures

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Sam Kobeissi, Nicholas N.A. Ling, Eric F. May, Michael L. Johns
{"title":"Measurements of intra-diffusion coefficients for gaseous binary mixtures","authors":"Sam Kobeissi, Nicholas N.A. Ling, Eric F. May, Michael L. Johns","doi":"10.1016/j.ces.2024.120952","DOIUrl":null,"url":null,"abstract":"Benchtop pulsed field gradient (PFG) nuclear magnetic resonance (NMR) measurements of the intra-diffusion coefficient (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;D&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2217;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>) for binary gaseous mixtures are presented as a function of composition, for temperature and pressure conditions broadly relevant to industrial and geological processes. This required the design, construction, and application of a novel NMR-compatible sapphire sample cell. Measurements were performed for methane–nitrogen, methane-helium, and methane-hydrogen mixtures, with compositions down to 0.5 mol% methane that were resolvable in a reasonable time frame. Consequently, extrapolation to infinite dilution was enabled, with the resultant values of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;D&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2217;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) compared with relevant mutual diffusion coefficients (<em>D</em><sub>12</sub>) from both literature and as estimated using kinetic theory (Thorne-Enskog equation). In the case of methane-helium mixtures, agreement was overwhelmingly within experimental uncertainty across the temperature–pressure parameter space explored, whereas in the case of methane–nitrogen, the determined values of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;D&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2217;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) were slightly larger than <em>D</em><sub>12</sub> data as predicted by kinetic theory. In the case of methane-hydrogen mixtures, simultaneous measurements of both methane and hydrogen intra-diffusion coefficients were possible. Agreement between <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;D&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2217;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) and kinetic theory was comfortably within experimental uncertainty in the case of hydrogen but deviated in the case of methane.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"18 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120952","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Benchtop pulsed field gradient (PFG) nuclear magnetic resonance (NMR) measurements of the intra-diffusion coefficient (Di) for binary gaseous mixtures are presented as a function of composition, for temperature and pressure conditions broadly relevant to industrial and geological processes. This required the design, construction, and application of a novel NMR-compatible sapphire sample cell. Measurements were performed for methane–nitrogen, methane-helium, and methane-hydrogen mixtures, with compositions down to 0.5 mol% methane that were resolvable in a reasonable time frame. Consequently, extrapolation to infinite dilution was enabled, with the resultant values of Di(xi = 0) compared with relevant mutual diffusion coefficients (D12) from both literature and as estimated using kinetic theory (Thorne-Enskog equation). In the case of methane-helium mixtures, agreement was overwhelmingly within experimental uncertainty across the temperature–pressure parameter space explored, whereas in the case of methane–nitrogen, the determined values of Di(xi = 0) were slightly larger than D12 data as predicted by kinetic theory. In the case of methane-hydrogen mixtures, simultaneous measurements of both methane and hydrogen intra-diffusion coefficients were possible. Agreement between Di(xi = 0) and kinetic theory was comfortably within experimental uncertainty in the case of hydrogen but deviated in the case of methane.
测量气态二元混合物的内部扩散系数
本文介绍了在与工业和地质过程广泛相关的温度和压力条件下,二元气体混合物的台式脉冲场梯度(PFG)核磁共振(NMR)内部扩散系数(Di∗Di∗)随成分变化的测量结果。这需要设计、建造和应用新型 NMR 兼容蓝宝石样品池。对甲烷-氮、甲烷-氦和甲烷-氢混合物进行了测量,其甲烷成分最低为 0.5 摩尔%,可在合理的时间范围内解析。因此,可以将其推断为无限稀释,并将 Di∗Di∗(xi = 0)的结果值与文献中的相关相互扩散系数(D12)以及利用动力学理论(索恩-恩斯科格方程)估算的结果进行比较。就甲烷-氦混合物而言,在所探讨的温度-压力参数空间内,两者的一致性绝大多数在实验不确定范围内,而就甲烷-氮而言,Di∗Di∗(xi = 0)的确定值略大于动力学理论预测的 D12 数据。在甲烷-氢气混合物中,可以同时测量甲烷和氢气的内部扩散系数。在氢气的情况下,Di∗Di∗(xi = 0)与动力学理论之间的一致性在实验的不确定性范围内,但在甲烷的情况下,两者之间存在偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信