Existence and absence of Killing horizons in static solutions with symmetries

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Hideki Maeda and Cristián Martínez
{"title":"Existence and absence of Killing horizons in static solutions with symmetries","authors":"Hideki Maeda and Cristián Martínez","doi":"10.1088/1361-6382/ad8ea4","DOIUrl":null,"url":null,"abstract":"Without specifying a matter field nor imposing energy conditions, we study Killing horizons in -dimensional static solutions in general relativity with an -dimensional Einstein base manifold. Assuming linear relations and near a Killing horizon between the energy density ρ, radial pressure , and tangential pressure p2 of the matter field, we prove that any non-vacuum solution satisfying ( ) or does not admit a horizon as it becomes a curvature singularity. For and , non-vacuum solutions admit Killing horizons, on which there exists a matter field only for and , which are of the Hawking–Ellis type I and type II, respectively. Differentiability of the metric on the horizon depends on the value of , and non-analytic extensions beyond the horizon are allowed for . In particular, solutions can be attached to the Schwarzschild–Tangherlini-type vacuum solution at the Killing horizon in at least a regular manner without a lightlike thin shell. We generalize some of those results in Lovelock gravity with a maximally symmetric base manifold.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"54 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad8ea4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Without specifying a matter field nor imposing energy conditions, we study Killing horizons in -dimensional static solutions in general relativity with an -dimensional Einstein base manifold. Assuming linear relations and near a Killing horizon between the energy density ρ, radial pressure , and tangential pressure p2 of the matter field, we prove that any non-vacuum solution satisfying ( ) or does not admit a horizon as it becomes a curvature singularity. For and , non-vacuum solutions admit Killing horizons, on which there exists a matter field only for and , which are of the Hawking–Ellis type I and type II, respectively. Differentiability of the metric on the horizon depends on the value of , and non-analytic extensions beyond the horizon are allowed for . In particular, solutions can be attached to the Schwarzschild–Tangherlini-type vacuum solution at the Killing horizon in at least a regular manner without a lightlike thin shell. We generalize some of those results in Lovelock gravity with a maximally symmetric base manifold.
具有对称性的静态解中基林地平线的存在与不存在
在不指定物质场也不施加能量条件的情况下,我们研究了具有-维爱因斯坦基流形的广义相对论-维静态解中的基林地平线。假定物质场的能量密度ρ、径向压力Ⅴ和切向压力p2之间存在线性关系,并且在基林地平线附近,我们证明任何满足( )或 的非真空解都不存在地平线,因为它变成了曲率奇点。对于 和 ,非真空解包含基林地平线,其上存在物质场的情况仅适用于 和 ,它们分别属于霍金-埃利斯类型 I 和类型 II。地平线上度量的可微分性取决于 、 的值,对于 、 ,允许在地平线之外进行非解析扩展。特别是,在基林地平线上,至少可以有规则地将解附在施瓦兹希尔德-唐格里尼型真空解上,而不需要类似光的薄壳。我们将其中一些结果推广到具有最大对称基流形的洛夫洛克引力中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信