Six birds with one stone: STING-activating photo-vaccination with glutamine metabolism reprogramming and cascade mitochondrial dysfunction for robust immune landscape remodeling
{"title":"Six birds with one stone: STING-activating photo-vaccination with glutamine metabolism reprogramming and cascade mitochondrial dysfunction for robust immune landscape remodeling","authors":"Luyao Tian, Xia Li, Lanping Guo, Luqi Huang, Wenyuan Gao","doi":"10.1016/j.cej.2024.157744","DOIUrl":null,"url":null,"abstract":"Autologous tumor cells hold great promise as personalized therapeutic vaccines. Nevertheless, the metabolic competition between tumor cells and the functional immune cells limits patient responses to autologous vaccine via fostering immunosuppressive microenvironment and facilitating immune escape. Herein, the STING-activating Photo-vaccination Inducer (BMA) is developed which can shift in immunological state from “cold” to “hot” by tumor metabolic reprogramming and the release of autologous tumor vaccines. BMA can form into peroxidase mimics <em>in situ</em> upon external energy stimulation,<!-- --> <!-- -->enabling continuous production of reactive oxygen species (ROS) through photodynamic effects and photosensitizer recycling. Tumor metabolic reprogramming with continually ROS generation facilitates maturation of dendritic cells (DCs) and reeducation of tumor immune landscape<!-- --> <!-- -->due to<!-- --> <!-- -->spatiotemporally<!-- --> <!-- -->cascading mitochondrial and nucleus dysfunction, leading to <em>in situ</em> nucleic acid vaccine release and stimulator of the interferon genes (STING) pathway activation. As anticipated, results from Cytometry by Time-Of-Flight (CyTOF) results indicate that the tumor landscape has been altered, effectively eradicating primary tumors and inducing beneficial “Abscopal Effects” that counteract checkpoint blockade (ICB) resistance. Our work for the first time leverages a universal and novel strategy of free radical therapy and personalized therapeutic vaccine for tumor immunoscape re-education thereby enhancing αPD-L1 blockade, presenting a rational way to surmount immunotherapy barriers to available clinical treatments.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"67 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157744","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Autologous tumor cells hold great promise as personalized therapeutic vaccines. Nevertheless, the metabolic competition between tumor cells and the functional immune cells limits patient responses to autologous vaccine via fostering immunosuppressive microenvironment and facilitating immune escape. Herein, the STING-activating Photo-vaccination Inducer (BMA) is developed which can shift in immunological state from “cold” to “hot” by tumor metabolic reprogramming and the release of autologous tumor vaccines. BMA can form into peroxidase mimics in situ upon external energy stimulation, enabling continuous production of reactive oxygen species (ROS) through photodynamic effects and photosensitizer recycling. Tumor metabolic reprogramming with continually ROS generation facilitates maturation of dendritic cells (DCs) and reeducation of tumor immune landscape due to spatiotemporally cascading mitochondrial and nucleus dysfunction, leading to in situ nucleic acid vaccine release and stimulator of the interferon genes (STING) pathway activation. As anticipated, results from Cytometry by Time-Of-Flight (CyTOF) results indicate that the tumor landscape has been altered, effectively eradicating primary tumors and inducing beneficial “Abscopal Effects” that counteract checkpoint blockade (ICB) resistance. Our work for the first time leverages a universal and novel strategy of free radical therapy and personalized therapeutic vaccine for tumor immunoscape re-education thereby enhancing αPD-L1 blockade, presenting a rational way to surmount immunotherapy barriers to available clinical treatments.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.