Corrigendum to “Enhancement on mechanical properties via phase separation induced by Cu-added high-entropy alloy fillers in metastable ferrous medium-entropy alloy welds” [J. Alloy. Compd. 1010 (2025) 177321]

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yoona Lee, Seonghoon Yoo, Byungrok Moon, Nokeun Park, Seongmoon Seo, Dongyun Lee, Byeong-Joo Lee, Hyoung Seop Kim, Namhyun Kang
{"title":"Corrigendum to “Enhancement on mechanical properties via phase separation induced by Cu-added high-entropy alloy fillers in metastable ferrous medium-entropy alloy welds” [J. Alloy. Compd. 1010 (2025) 177321]","authors":"Yoona Lee, Seonghoon Yoo, Byungrok Moon, Nokeun Park, Seongmoon Seo, Dongyun Lee, Byeong-Joo Lee, Hyoung Seop Kim, Namhyun Kang","doi":"10.1016/j.jallcom.2024.177474","DOIUrl":null,"url":null,"abstract":"The author regrets the following:<ul><li><span>1)</span><span>I would like to replace the <span><span>Fig. 2</span></span> with the following figure as there is a typo in the original <span><span>Fig. 2</span></span>.<figure><span><img alt=\"Fig. 2\" aria-describedby=\"cap0005\" height=\"416\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S0925838824040623-gr1.jpg\"/><ol><li><span><span>Download: <span>Download high-res image (520KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span><span><span><p><span>Fig. 2</span>. Weldability and compositional behaviour in GTA welds using CoFeMnNiCu and (CoFeMnNi)<sub>70</sub>Cu<sub>30</sub> fillers: (a) Macroscopical views of the BSE image and (b) compositional behaviours of the cross-sections in transverse GTA welds. Yellow and red dashed lines indicate the fusion line and the location of quantitative EPMA, respectively.</p></span></span></figure></span></li><li><span>2)</span><span>There is a blank space after = in <span><span>Eqs. (2) and (4)</span></span>. The corrected equations are follows:</span></li></ul><span><span><span>(2)</span><span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B4;&lt;/mi&gt;&lt;mo is=\"true\"&gt;=&lt;/mo&gt;&lt;mn is=\"true\"&gt;100&lt;/mn&gt;&lt;msqrt is=\"true\"&gt;&lt;munderover is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2211;&lt;/mo&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;mo is=\"true\"&gt;=&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mi is=\"true\"&gt;n&lt;/mi&gt;&lt;/munderover&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mfenced open=\"(\" close=\")\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mfrac is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/msqrt&gt;&lt;mo is=\"true\"&gt;,&lt;/mo&gt;&lt;mspace width=\"0.25em\" is=\"true\" /&gt;&lt;mspace width=\"0.25em\" is=\"true\" /&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;mo is=\"true\"&gt;=&lt;/mo&gt;&lt;munderover is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2211;&lt;/mo&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;mo is=\"true\"&gt;=&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mi is=\"true\"&gt;n&lt;/mi&gt;&lt;/munderover&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;C&lt;/mi&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;mi is=\"true\"&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"4.625ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1393 19020.1 1991.2\" width=\"44.176ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B4\"></use></g><g is=\"true\" transform=\"translate(729,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(1785,0)\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(3287,0)\"><use x=\"0\" xlink:href=\"#MJSZ2-221A\" y=\"120\"></use><rect height=\"60\" stroke=\"none\" width=\"7548\" x=\"1000\" y=\"1211\"></rect><g transform=\"translate(1000,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJSZ1-2211\"></use></g><g is=\"true\" transform=\"translate(1056,477)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6E\"></use></g><g is=\"true\" transform=\"translate(1056,-287)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g><g is=\"true\" transform=\"translate(244,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(794,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g></g><g is=\"true\" transform=\"translate(2471,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g></g><g is=\"true\" transform=\"translate(715,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g><g is=\"true\" transform=\"translate(3531,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJSZ1-28\"></use><g is=\"true\" transform=\"translate(458,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(722,0)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(1501,0)\"><g transform=\"translate(342,0)\"><rect height=\"60\" stroke=\"none\" width=\"682\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(60,515)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-72\"></use></g><g is=\"true\" transform=\"translate(319,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g><g is=\"true\" transform=\"translate(129,-345)\"><g is=\"true\"><g is=\"true\" transform=\"translate(24,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-72\"></use></g><g is=\"true\" transform=\"translate(55,4)\"><use transform=\"scale(0.707)\" x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"20\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g></g></g></g></g><use x=\"3104\" xlink:href=\"#MJSZ1-29\" y=\"-1\"></use></g></g><g is=\"true\" transform=\"translate(3563,577)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g><g is=\"true\" transform=\"translate(11836,0)\"><use xlink:href=\"#MJMAIN-2C\"></use></g><g is=\"true\"></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(12781,0)\"><g is=\"true\" transform=\"translate(35,0)\"><use xlink:href=\"#MJMATHI-72\"></use></g><g is=\"true\" transform=\"translate(55,-25)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"21\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(13636,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(14692,0)\"><g is=\"true\"><use xlink:href=\"#MJSZ1-2211\"></use></g><g is=\"true\" transform=\"translate(1056,477)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6E\"></use></g><g is=\"true\" transform=\"translate(1056,-287)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g><g is=\"true\" transform=\"translate(244,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(794,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g></g><g is=\"true\" transform=\"translate(17164,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g><g is=\"true\" transform=\"translate(18224,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-72\"></use></g><g is=\"true\" transform=\"translate(451,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">δ</mi><mo is=\"true\">=</mo><mn is=\"true\">100</mn><msqrt is=\"true\"><munderover is=\"true\"><mo is=\"true\">∑</mo><mrow is=\"true\"><mi is=\"true\">i</mi><mo is=\"true\">=</mo><mn is=\"true\">1</mn></mrow><mi is=\"true\">n</mi></munderover><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">i</mi></mrow></msub><msup is=\"true\"><mrow is=\"true\"><mfenced close=\")\" is=\"true\" open=\"(\"><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">−</mo><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">r</mi><mi is=\"true\">i</mi></msub></mrow><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">r</mi><mo is=\"true\">¯</mo></mover></mrow></mfrac></mrow></mfenced></mrow><mn is=\"true\">2</mn></msup></msqrt><mo is=\"true\">,</mo><mspace is=\"true\" width=\"0.25em\"></mspace><mspace is=\"true\" width=\"0.25em\"></mspace><mover accent=\"true\" is=\"true\"><mi is=\"true\">r</mi><mo is=\"true\">¯</mo></mover><mo is=\"true\">=</mo><munderover is=\"true\"><mo is=\"true\">∑</mo><mrow is=\"true\"><mi is=\"true\">i</mi><mo is=\"true\">=</mo><mn is=\"true\">1</mn></mrow><mi is=\"true\">n</mi></munderover><msub is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">i</mi></msub><msub is=\"true\"><mi is=\"true\">r</mi><mi is=\"true\">i</mi></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">δ</mi><mo is=\"true\">=</mo><mn is=\"true\">100</mn><msqrt is=\"true\"><munderover is=\"true\"><mo is=\"true\">∑</mo><mrow is=\"true\"><mi is=\"true\">i</mi><mo is=\"true\">=</mo><mn is=\"true\">1</mn></mrow><mi is=\"true\">n</mi></munderover><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">i</mi></mrow></msub><msup is=\"true\"><mrow is=\"true\"><mfenced open=\"(\" close=\")\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">−</mo><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">r</mi><mi is=\"true\">i</mi></msub></mrow><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">r</mi><mo is=\"true\">¯</mo></mover></mrow></mfrac></mrow></mfenced></mrow><mn is=\"true\">2</mn></msup></msqrt><mo is=\"true\">,</mo><mspace width=\"0.25em\" is=\"true\"></mspace><mspace width=\"0.25em\" is=\"true\"></mspace><mover accent=\"true\" is=\"true\"><mi is=\"true\">r</mi><mo is=\"true\">¯</mo></mover><mo is=\"true\">=</mo><munderover is=\"true\"><mo is=\"true\">∑</mo><mrow is=\"true\"><mi is=\"true\">i</mi><mo is=\"true\">=</mo><mn is=\"true\">1</mn></mrow><mi is=\"true\">n</mi></munderover><msub is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">i</mi></msub><msub is=\"true\"><mi is=\"true\">r</mi><mi is=\"true\">i</mi></msub></mrow></math></script></span></span></span><span><span><span>(4)</span><span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3C1;&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;111&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo linebreak=\"goodbreak\" is=\"true\"&gt;=&lt;/mo&gt;&lt;mfrac is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;msqrt is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mfrac is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.932ex\" role=\"img\" style=\"vertical-align: -1.735ex;\" viewbox=\"0 -945.9 6386.1 1693.1\" width=\"14.832ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C1\"></use></g></g><g is=\"true\" transform=\"translate(517,-253)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1001\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></g></g><g is=\"true\" transform=\"translate(1956,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(2735,0)\"><g transform=\"translate(397,0)\"><rect height=\"60\" stroke=\"none\" width=\"1063\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(354,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g><g is=\"true\" transform=\"translate(60,-533)\"><g is=\"true\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-221A\" y=\"28\"></use><rect height=\"42\" stroke=\"none\" width=\"353\" x=\"589\" y=\"544\"></rect><g transform=\"translate(589,0)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></g></g></g><g is=\"true\" transform=\"translate(4316,0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"1829\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(737,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(60,-441)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-61\"></use></g></g><g is=\"true\" transform=\"translate(374,204)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g><g is=\"true\" transform=\"translate(695,0)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(568,-115)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-41\"></use></g></g></g></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">ρ</mi></mrow><mrow is=\"true\"><mn is=\"true\">111</mn></mrow></msub><mo is=\"true\" linebreak=\"goodbreak\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><msqrt is=\"true\"><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msqrt></mrow></mfrac><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">a</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mi is=\"true\">A</mi></mrow></msub></mrow></mfrac></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">ρ</mi></mrow><mrow is=\"true\"><mn is=\"true\">111</mn></mrow></msub><mo linebreak=\"goodbreak\" is=\"true\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><msqrt is=\"true\"><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msqrt></mrow></mfrac><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">a</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mi is=\"true\">A</mi></mrow></msub></mrow></mfrac></mrow></math></script></span></span></span>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177474","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The author regrets the following:
  • 1)I would like to replace the Fig. 2 with the following figure as there is a typo in the original Fig. 2.
    Abstract Image
    1. Download: Download high-res image (520KB)
    2. Download: Download full-size image

    Fig. 2. Weldability and compositional behaviour in GTA welds using CoFeMnNiCu and (CoFeMnNi)70Cu30 fillers: (a) Macroscopical views of the BSE image and (b) compositional behaviours of the cross-sections in transverse GTA welds. Yellow and red dashed lines indicate the fusion line and the location of quantitative EPMA, respectively.

  • 2)There is a blank space after = in Eqs. (2) and (4). The corrected equations are follows:
(2)δ=100i=1nCi1rir¯2,r¯=i=1nCiri(4)ρ111=431a2NA
更正:"通过在可转移的铁质中熵合金焊缝中添加铜质高熵合金填料诱导相分离来增强机械性能" [J. Alloy. Compd. 1010 (2025) 177321]
作者对以下内容表示遗憾:1)由于原图 2 中存在错字,我想用下图替换图 2:下载高清图片 (520KB)Download:下载:下载全尺寸图像图 2.使用 CoFeMnNiCu 和 (CoFeMnNi)70Cu30 填料的 GTA 焊缝的可焊性和成分特性:(a) BSE 图像的宏观视图;(b) 横向 GTA 焊缝截面的成分特性。黄色和红色虚线分别表示熔合线和 EPMA 定量位置。The corrected equations are follows:(2)δ=100∑i=1nCi1−rir¯2,r¯=∑i=1nCiriδ=100∑i=1nCi1−rir¯2,r¯=∑i=1nCiri(4)ρ111=431a2NAρ111=431a2NA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信