{"title":"UAV-Enabled Wireless Networks for Integrated Sensing and Learning-Oriented Communication","authors":"Wenhao Zhuang;Xinyu He;Yuyi Mao;Juan Liu","doi":"10.1109/LWC.2024.3501395","DOIUrl":null,"url":null,"abstract":"Future wireless networks are envisioned to support both sensing and artificial intelligence (AI) services. However, conventional integrated sensing and communication (ISAC) networks may not be suitable due to the ignorance of diverse task-specific data utilities in different AI applications. In this letter, a full-duplex unmanned aerial vehicle (UAV)-enabled wireless network providing sensing and edge learning services is investigated. To maximize the learning performance while ensuring sensing quality, a convergence-guaranteed iterative algorithm is developed to jointly determine the uplink time allocation, as well as UAV trajectory and transmit power. Simulation results show that the proposed algorithm significantly outperforms the baselines and demonstrate the critical tradeoff between sensing and learning performance.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"14 2","pages":"340-344"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10756618/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Future wireless networks are envisioned to support both sensing and artificial intelligence (AI) services. However, conventional integrated sensing and communication (ISAC) networks may not be suitable due to the ignorance of diverse task-specific data utilities in different AI applications. In this letter, a full-duplex unmanned aerial vehicle (UAV)-enabled wireless network providing sensing and edge learning services is investigated. To maximize the learning performance while ensuring sensing quality, a convergence-guaranteed iterative algorithm is developed to jointly determine the uplink time allocation, as well as UAV trajectory and transmit power. Simulation results show that the proposed algorithm significantly outperforms the baselines and demonstrate the critical tradeoff between sensing and learning performance.
期刊介绍:
IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.