{"title":"Highly Reversible Tuning of Light-Matter Interactions in Van der Waals Materials Coupled with Hydrogel-Assisted Optical Cavity","authors":"Lanxin Xu, Jiaqi Wang, Zishun Li, Peng Xie, Qi Ding, Minghao An, Yingjie Zhao, Yiheng Tang, Lan Li, Chengchen Guo, Wei Wang, Xiaorui Zheng","doi":"10.1002/lpor.202401263","DOIUrl":null,"url":null,"abstract":"Controlling light-matter interactions via cavity systems manifested by Rabi splitting is paramount important for nanophotonics. However, achieving conveniently accessible and active tuning of light-matter interactions remains a formidable challenge. Traditional approaches often necessitate either sophisticated design or meticulous nanofabrication to address this issue. Here, a handy strategy is experimentally demonstrated to build an adjustable coupling system featuring reversibly modulated responses based on dielectric-hydrogel-metal resonators. By controlling the top tungsten disulfide layer thickness, the flexible manipulation of weak-intermediate-strong transitions in exciton-cavity interactions is revealed on a large-scale hydrogel membrane without nanopositioning or lithography. Crucially, by leveraging the inflation sensitivity of the hydrogel, the coupling strength can be reversibly tailored with excellent reproducibility by modulating the resonator's dry/immersed states. The combined merits of captivating design and daily stimulus render the novel hydrogel-based nanocavities as a groundbreaking step toward the development of active and practical integrated optical devices, such as polariton lasing, switches, and sensors.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"227 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401263","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling light-matter interactions via cavity systems manifested by Rabi splitting is paramount important for nanophotonics. However, achieving conveniently accessible and active tuning of light-matter interactions remains a formidable challenge. Traditional approaches often necessitate either sophisticated design or meticulous nanofabrication to address this issue. Here, a handy strategy is experimentally demonstrated to build an adjustable coupling system featuring reversibly modulated responses based on dielectric-hydrogel-metal resonators. By controlling the top tungsten disulfide layer thickness, the flexible manipulation of weak-intermediate-strong transitions in exciton-cavity interactions is revealed on a large-scale hydrogel membrane without nanopositioning or lithography. Crucially, by leveraging the inflation sensitivity of the hydrogel, the coupling strength can be reversibly tailored with excellent reproducibility by modulating the resonator's dry/immersed states. The combined merits of captivating design and daily stimulus render the novel hydrogel-based nanocavities as a groundbreaking step toward the development of active and practical integrated optical devices, such as polariton lasing, switches, and sensors.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.