Renu Yadav, Saroj Poudyal, Bubunu Biswal, Ramesh Rajarapu, Prahalad Kanti Barman, Kostya S. Novoselov, Abhishek Misra
{"title":"Investigation of resistive switching behavior driven by active and passive electrodes in MoO2–MoS2 core shell nanowire memristors","authors":"Renu Yadav, Saroj Poudyal, Bubunu Biswal, Ramesh Rajarapu, Prahalad Kanti Barman, Kostya S. Novoselov, Abhishek Misra","doi":"10.1063/5.0233927","DOIUrl":null,"url":null,"abstract":"Memristive devices based on layered materials have the potential to enable low power electronics with ultra-fast operations toward the development of next generation memory and computing technologies. Memristor performance and switching behavior crucially depend on the switching matrix and on the type of electrodes used. In this work, we investigate the effect of different electrodes in 1D MoO2–MoS2 core shell nanowire memristors by highlighting their role in achieving distinct switching behavior. Analog and digital resistive switching are realized with carbon based passive (multi-layer graphene and multiwall carbon nanotube) and 3D active metal (silver and nickel) electrodes, respectively. Temperature dependent electrical transport studies of the conducting filament down to cryogenic temperatures reveal its semiconducting and metallic nature for passive and active top electrodes, respectively. These investigations shed light on the physics of the filament formation and provide a knob to design and develop the memristors with specific switching characteristics for desired end uses.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"7 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0233927","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Memristive devices based on layered materials have the potential to enable low power electronics with ultra-fast operations toward the development of next generation memory and computing technologies. Memristor performance and switching behavior crucially depend on the switching matrix and on the type of electrodes used. In this work, we investigate the effect of different electrodes in 1D MoO2–MoS2 core shell nanowire memristors by highlighting their role in achieving distinct switching behavior. Analog and digital resistive switching are realized with carbon based passive (multi-layer graphene and multiwall carbon nanotube) and 3D active metal (silver and nickel) electrodes, respectively. Temperature dependent electrical transport studies of the conducting filament down to cryogenic temperatures reveal its semiconducting and metallic nature for passive and active top electrodes, respectively. These investigations shed light on the physics of the filament formation and provide a knob to design and develop the memristors with specific switching characteristics for desired end uses.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.