Ciro Salcedo, Kaya Mori, Gabriel Bridges, Charles J. Hailey, David A. H. Buckley, Raimundo Lopes de Oliveira, Gavin Ramsay and Anke van Dyk
{"title":"A Broadband X-Ray Investigation of Fast-spinning Intermediate Polar CTCV J2056–3014","authors":"Ciro Salcedo, Kaya Mori, Gabriel Bridges, Charles J. Hailey, David A. H. Buckley, Raimundo Lopes de Oliveira, Gavin Ramsay and Anke van Dyk","doi":"10.3847/1538-4357/ad7feb","DOIUrl":null,"url":null,"abstract":"We report on XMM-Newton, NuSTAR, and NICER X-ray observations of CTCV J2056–3014, a cataclysmic variable (CV) with one of the fastest-spinning white dwarfs (WDs) at P = 29.6 s. While previously classified as an intermediate polar, CJ2056 also exhibits the properties of WZ Sge–type CVs, such as dwarf novae and superoutbursts. With XMM-Newton and NICER, we detected the spin period up to ∼2 keV with 7σ significance. We constrained its derivative to s s−1 after correcting for binary orbital motion. The pulse profile is characterized by a single broad peak with ∼25% modulation. NuSTAR detected a fourfold increase in unabsorbed X-ray flux coincident with an optical flare, in 2022 November. The XMM-Newton and NICER X-ray spectra at 0.310 keV are best characterized by an absorbed, optically thin three-temperature thermal plasma model (kT = 0.3, 1.0, and 4.9 keV), while the NuSTAR spectra at 3–30 keV are best fit by a single-temperature thermal plasma model (kT = 8.4 keV), both with Fe abundance ZFe/Z⊙ = 0.3. CJ2056 exhibits similarities to other fast-spinning CVs, such as low plasma temperatures and no significant X-ray absorption at low energies. As the WD’s magnetic field strength is unknown, we applied both nonmagnetic and magnetic CV spectral models (MKCFLOW and MCVSPEC) to determine the WD mass. The derived WD mass range (M = 0.7–1.0 M⊙) is above the centrifugal breakup mass limit of 0.56 M⊙ and consistent with the mean WD mass of local CVs (M ≈ 0.8–0.9 M⊙).","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad7feb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report on XMM-Newton, NuSTAR, and NICER X-ray observations of CTCV J2056–3014, a cataclysmic variable (CV) with one of the fastest-spinning white dwarfs (WDs) at P = 29.6 s. While previously classified as an intermediate polar, CJ2056 also exhibits the properties of WZ Sge–type CVs, such as dwarf novae and superoutbursts. With XMM-Newton and NICER, we detected the spin period up to ∼2 keV with 7σ significance. We constrained its derivative to s s−1 after correcting for binary orbital motion. The pulse profile is characterized by a single broad peak with ∼25% modulation. NuSTAR detected a fourfold increase in unabsorbed X-ray flux coincident with an optical flare, in 2022 November. The XMM-Newton and NICER X-ray spectra at 0.310 keV are best characterized by an absorbed, optically thin three-temperature thermal plasma model (kT = 0.3, 1.0, and 4.9 keV), while the NuSTAR spectra at 3–30 keV are best fit by a single-temperature thermal plasma model (kT = 8.4 keV), both with Fe abundance ZFe/Z⊙ = 0.3. CJ2056 exhibits similarities to other fast-spinning CVs, such as low plasma temperatures and no significant X-ray absorption at low energies. As the WD’s magnetic field strength is unknown, we applied both nonmagnetic and magnetic CV spectral models (MKCFLOW and MCVSPEC) to determine the WD mass. The derived WD mass range (M = 0.7–1.0 M⊙) is above the centrifugal breakup mass limit of 0.56 M⊙ and consistent with the mean WD mass of local CVs (M ≈ 0.8–0.9 M⊙).