Study of Evolution and Geo-effectiveness of Coronal Mass Ejection–Coronal Mass Ejection Interactions Using Magnetohydrodynamic Simulations with SWASTi Framework

Prateek Mayank, Stefan Lotz, Bhargav Vaidya, Wageesh Mishra and D. Chakrabarty
{"title":"Study of Evolution and Geo-effectiveness of Coronal Mass Ejection–Coronal Mass Ejection Interactions Using Magnetohydrodynamic Simulations with SWASTi Framework","authors":"Prateek Mayank, Stefan Lotz, Bhargav Vaidya, Wageesh Mishra and D. Chakrabarty","doi":"10.3847/1538-4357/ad8084","DOIUrl":null,"url":null,"abstract":"The geo-effectiveness of coronal mass ejections (CMEs) is a critical area of study in space weather, particularly in the lesser-explored domain of CME–CME interactions and their geomagnetic consequences. This study leverages the Space Weather Adaptive SimulaTion framework to perform 3D MHD simulation of a range of CME–CME interaction scenarios within realistic solar wind conditions. The focus is on the dynamics of the initial magnetic flux, speed, density, and tilt of CMEs, and their individual and combined impacts on the disturbance storm time (Dst) index. Additionally, the kinematic, magnetic, and structural impacts on the leading CME, as well as the mixing of both CMEs, are analyzed. Time-series in situ studies are conducted through virtual spacecraft positioned along three different longitudes at 1 au. Our findings reveal that CME–CME interactions are nonuniform along different longitudes, due to the inhomogeneous ambient solar wind conditions. A significant increase in the momentum and kinetic energy of the leading CME is observed due to collisions with the trailing CME, along with the formation of reverse shocks in cases of strong interaction. These reverse shocks lead to complex wave patterns inside CME2, which can prolong the storm recovery phase. Furthermore, we observe that the minimum Dst value decreases with an increase in the initial density, tilt, and speed of the trailing CME.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad8084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The geo-effectiveness of coronal mass ejections (CMEs) is a critical area of study in space weather, particularly in the lesser-explored domain of CME–CME interactions and their geomagnetic consequences. This study leverages the Space Weather Adaptive SimulaTion framework to perform 3D MHD simulation of a range of CME–CME interaction scenarios within realistic solar wind conditions. The focus is on the dynamics of the initial magnetic flux, speed, density, and tilt of CMEs, and their individual and combined impacts on the disturbance storm time (Dst) index. Additionally, the kinematic, magnetic, and structural impacts on the leading CME, as well as the mixing of both CMEs, are analyzed. Time-series in situ studies are conducted through virtual spacecraft positioned along three different longitudes at 1 au. Our findings reveal that CME–CME interactions are nonuniform along different longitudes, due to the inhomogeneous ambient solar wind conditions. A significant increase in the momentum and kinetic energy of the leading CME is observed due to collisions with the trailing CME, along with the formation of reverse shocks in cases of strong interaction. These reverse shocks lead to complex wave patterns inside CME2, which can prolong the storm recovery phase. Furthermore, we observe that the minimum Dst value decreases with an increase in the initial density, tilt, and speed of the trailing CME.
利用 SWASTi 框架的磁流体动力学模拟研究日冕物质抛射-日冕物质抛射相互作用的演变和地球效应
日冕物质抛射(CMEs)的地球效应是空间天气研究的一个关键领域,特别是在较少探索的 CME-CME 相互作用及其地磁后果领域。本研究利用空间天气自适应模拟框架,在现实太阳风条件下对一系列 CME-CME 相互作用情况进行三维 MHD 模拟。重点是 CME 的初始磁通量、速度、密度和倾斜的动态,以及它们对扰动风暴时间(Dst)指数的单独和综合影响。此外,还分析了对前导 CME 的运动学、磁场和结构影响,以及两个 CME 的混合情况。通过沿 1 au 三个不同经度定位的虚拟航天器进行了时间序列原位研究。我们的研究结果表明,由于环境太阳风条件的不均匀性,沿不同经度的 CME-CME 相互作用是不均匀的。由于与尾随的 CME 发生碰撞,观察到前导 CME 的动量和动能明显增加,在强相互作用的情况下还会形成反向冲击。这些反向冲击导致 CME2 内部出现复杂的波形,从而延长了风暴恢复阶段。此外,我们还观察到,随着尾随 CME 初始密度、倾斜度和速度的增加,最小 Dst 值也在减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信