Polina Petrov, Stephen R. Taylor, Maria Charisi and Chung-Pei Ma
{"title":"Identifying the Host Galaxies of Supermassive Black Hole Binaries Found by Pulsar Timing Arrays","authors":"Polina Petrov, Stephen R. Taylor, Maria Charisi and Chung-Pei Ma","doi":"10.3847/1538-4357/ad7b14","DOIUrl":null,"url":null,"abstract":"Supermassive black hole binaries (SMBHBs) are thought to form in galaxy mergers, possessing the potential to produce electromagnetic (EM) radiation as well as gravitational waves (GWs) detectable with pulsar timing arrays (PTAs). Once GWs from individually resolved SMBHBs are detected, the identification of the host galaxy will be a major challenge due to the ambiguity in possible EM signatures and the poor localization capability of PTAs. To aid EM observations in choosing follow-up sources, we use NANOGrav’s galaxy catalog to quantify the number of plausible hosts in both realistic and idealistic scenarios. We outline a host identification pipeline that injects a single-source GW signal into a simulated PTA data set, recovers the signal using production-level techniques, quantifies the localization region and number of galaxies contained therein, and finally imposes cuts on the galaxies using parameter estimates from the GW search. In an ideal case, the 90% credible areas span 29–241 deg2, containing about 14–341 galaxies. After cuts, the number of galaxies remaining ranges from 22 at worst to one true host at best. In a realistic case, these areas range from 287 to 530 deg2 and enclose about 285–1238 galaxies. After cuts, the number of galaxies is 397 at worst and 27 at best. While the signal-to-noise ratio is the primary determinant of the localization area of a given source, we find that the area is also influenced by the proximity to nearby pulsars on the sky and the binary chirp mass.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad7b14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Supermassive black hole binaries (SMBHBs) are thought to form in galaxy mergers, possessing the potential to produce electromagnetic (EM) radiation as well as gravitational waves (GWs) detectable with pulsar timing arrays (PTAs). Once GWs from individually resolved SMBHBs are detected, the identification of the host galaxy will be a major challenge due to the ambiguity in possible EM signatures and the poor localization capability of PTAs. To aid EM observations in choosing follow-up sources, we use NANOGrav’s galaxy catalog to quantify the number of plausible hosts in both realistic and idealistic scenarios. We outline a host identification pipeline that injects a single-source GW signal into a simulated PTA data set, recovers the signal using production-level techniques, quantifies the localization region and number of galaxies contained therein, and finally imposes cuts on the galaxies using parameter estimates from the GW search. In an ideal case, the 90% credible areas span 29–241 deg2, containing about 14–341 galaxies. After cuts, the number of galaxies remaining ranges from 22 at worst to one true host at best. In a realistic case, these areas range from 287 to 530 deg2 and enclose about 285–1238 galaxies. After cuts, the number of galaxies is 397 at worst and 27 at best. While the signal-to-noise ratio is the primary determinant of the localization area of a given source, we find that the area is also influenced by the proximity to nearby pulsars on the sky and the binary chirp mass.