Unraveling the Effects of Strain-Induced Defect Engineering on the Visible-Light-Driven Photodynamic Performance of Zn2SnO4 Nanoparticles Modified by Larger Barium Cations.
Alaa Kamo, Ozlem Ates Sonmezoglu, Savas Sonmezoglu
{"title":"Unraveling the Effects of Strain-Induced Defect Engineering on the Visible-Light-Driven Photodynamic Performance of Zn<sub>2</sub>SnO<sub>4</sub> Nanoparticles Modified by Larger Barium Cations.","authors":"Alaa Kamo, Ozlem Ates Sonmezoglu, Savas Sonmezoglu","doi":"10.1021/acsabm.4c01447","DOIUrl":null,"url":null,"abstract":"<p><p>Waterborne infections caused by pathogenic microorganisms represent serious health risks for humans. Ternary zinc-tin oxide nanoparticles have great potential as a cost-effective, environmentally friendly, and efficient candidate for waterborne infections; however, their photocatalytic and antibacterial effects are quite limited due to insufficient visible light absorption and rapid electron-hole recombination. Herein, barium-doped zinc stannate (Ba@ZTO) nanoparticles were synthesized by the hydrothermal method and used for the first time not only as antibacterial agents to prevent the spread of the harmful bacteria <i>S. aureus</i> and <i>E. coli</i> but also as photocatalysts to degrade the organic pollutant rhodamine B. Unexpectedly, Ba<sup>2+</sup> ions exhibited compressive stress behavior instead of the predicted tensile stress when inserted into the ZTO crystal lattice, playing an active role in increasing oxygen vacancies within the crystal lattice and in the formation of hydroxyl radicals in the bulk solution and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) radicals, significantly improving the photocatalytic and antibacterial properties. Strain-induced defects created by the insertion of larger barium ions into the ZTO lattice promote the increase of shallow traps for boosting photocatalytic/disinfection properties while suppressing deep-level traps that encourage nonradiative recombination. In essence, defect and strain engineering opens a promising route to achieve high disinfection efficiency by inducing larger cation ions under visible light in oxide-based materials.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8656-8670"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Waterborne infections caused by pathogenic microorganisms represent serious health risks for humans. Ternary zinc-tin oxide nanoparticles have great potential as a cost-effective, environmentally friendly, and efficient candidate for waterborne infections; however, their photocatalytic and antibacterial effects are quite limited due to insufficient visible light absorption and rapid electron-hole recombination. Herein, barium-doped zinc stannate (Ba@ZTO) nanoparticles were synthesized by the hydrothermal method and used for the first time not only as antibacterial agents to prevent the spread of the harmful bacteria S. aureus and E. coli but also as photocatalysts to degrade the organic pollutant rhodamine B. Unexpectedly, Ba2+ ions exhibited compressive stress behavior instead of the predicted tensile stress when inserted into the ZTO crystal lattice, playing an active role in increasing oxygen vacancies within the crystal lattice and in the formation of hydroxyl radicals in the bulk solution and hydrogen peroxide (H2O2) radicals, significantly improving the photocatalytic and antibacterial properties. Strain-induced defects created by the insertion of larger barium ions into the ZTO lattice promote the increase of shallow traps for boosting photocatalytic/disinfection properties while suppressing deep-level traps that encourage nonradiative recombination. In essence, defect and strain engineering opens a promising route to achieve high disinfection efficiency by inducing larger cation ions under visible light in oxide-based materials.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.