{"title":"Enhancing Motor Imagery Classification with Residual Graph Convolutional Networks and Multi-Feature Fusion.","authors":"Fangzhou Xu, Weiyou Shi, Chengyan Lv, Yuan Sun, Shuai Guo, Chao Feng, Yang Zhang, Tzyy-Ping Jung, Jiancai Leng","doi":"10.1142/S0129065724500692","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain-computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals from stroke patients poses challenges. To address the issues of low accuracy and efficiency in EEG classification, particularly involving MI, the study proposes a residual graph convolutional network (M-ResGCN) framework based on the modified <i>S</i>-transform (MST), and introduces the self-attention mechanism into residual graph convolutional network (ResGCN). This study uses MST to extract EEG time-frequency domain features, derives spatial EEG features by calculating the absolute Pearson correlation coefficient (aPcc) between channels, and devises a method to construct the adjacency matrix of the brain network using aPcc to measure the strength of the connection between channels. Experimental results involving 16 stroke patients and 16 healthy subjects demonstrate significant improvements in classification quality and robustness across tests and subjects. The highest classification accuracy reached 94.91% and a Kappa coefficient of 0.8918. The average accuracy and <i>F</i>1 scores from 10 times 10-fold cross-validation are 94.38% and 94.36%, respectively. By validating the feasibility and applicability of brain networks constructed using the aPcc in EEG signal analysis and feature encoding, it was established that the aPcc effectively reflects overall brain activity. The proposed method presents a novel approach to exploring channel relationships in MI-EEG and improving classification performance. It holds promise for real-time applications in MI-based BCI systems.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450069"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065724500692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain-computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals from stroke patients poses challenges. To address the issues of low accuracy and efficiency in EEG classification, particularly involving MI, the study proposes a residual graph convolutional network (M-ResGCN) framework based on the modified S-transform (MST), and introduces the self-attention mechanism into residual graph convolutional network (ResGCN). This study uses MST to extract EEG time-frequency domain features, derives spatial EEG features by calculating the absolute Pearson correlation coefficient (aPcc) between channels, and devises a method to construct the adjacency matrix of the brain network using aPcc to measure the strength of the connection between channels. Experimental results involving 16 stroke patients and 16 healthy subjects demonstrate significant improvements in classification quality and robustness across tests and subjects. The highest classification accuracy reached 94.91% and a Kappa coefficient of 0.8918. The average accuracy and F1 scores from 10 times 10-fold cross-validation are 94.38% and 94.36%, respectively. By validating the feasibility and applicability of brain networks constructed using the aPcc in EEG signal analysis and feature encoding, it was established that the aPcc effectively reflects overall brain activity. The proposed method presents a novel approach to exploring channel relationships in MI-EEG and improving classification performance. It holds promise for real-time applications in MI-based BCI systems.