{"title":"Deep Learning Recognition of Paroxysmal Kinesigenic Dyskinesia Based on EEG Functional Connectivity.","authors":"Liang Zhao, Renling Zou, Linpeng Jin","doi":"10.1142/S0129065725500017","DOIUrl":null,"url":null,"abstract":"<p><p>Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder marked by transient involuntary movements triggered by sudden actions. Current diagnostic approaches, including genetic screening, face challenges in identifying secondary cases due to symptom overlap with other disorders. This study introduces a novel PKD recognition method utilizing a resting-state electroencephalogram (EEG) functional connectivity matrix and a deep learning architecture (AT-1CBL). Resting-state EEG data from 44 PKD patients and 44 healthy controls (HCs) were collected using a 128-channel EEG system. Functional connectivity matrices were computed and transformed into graph data to examine brain network property differences between PKD patients and controls through graph theory. Source localization was conducted to explore neural circuit differences in patients. The AT-1CBL model, integrating 1D-CNN and Bi-LSTM with attentional mechanisms, achieved a classification accuracy of 93.77% on phase lag index (PLI) features in the Theta band. Graph theoretic analysis revealed significant phase synchronization impairments in the Theta band of the functional brain network in PKD patients, particularly in the distribution of weak connections compared to HCs. Source localization analyses indicated greater differences in functional connectivity in sensorimotor regions and the frontal-limbic system in PKD patients, suggesting abnormalities in motor integration related to clinical symptoms. This study highlights the potential of deep learning models based on EEG functional connectivity for accurate and cost-effective PKD diagnosis, supporting the development of portable EEG devices for clinical monitoring and diagnosis. However, the limited dataset size may affect generalizability, and further exploration of multimodal data integration and advanced deep learning architectures is necessary to enhance the robustness of PKD diagnostic models.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550001"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder marked by transient involuntary movements triggered by sudden actions. Current diagnostic approaches, including genetic screening, face challenges in identifying secondary cases due to symptom overlap with other disorders. This study introduces a novel PKD recognition method utilizing a resting-state electroencephalogram (EEG) functional connectivity matrix and a deep learning architecture (AT-1CBL). Resting-state EEG data from 44 PKD patients and 44 healthy controls (HCs) were collected using a 128-channel EEG system. Functional connectivity matrices were computed and transformed into graph data to examine brain network property differences between PKD patients and controls through graph theory. Source localization was conducted to explore neural circuit differences in patients. The AT-1CBL model, integrating 1D-CNN and Bi-LSTM with attentional mechanisms, achieved a classification accuracy of 93.77% on phase lag index (PLI) features in the Theta band. Graph theoretic analysis revealed significant phase synchronization impairments in the Theta band of the functional brain network in PKD patients, particularly in the distribution of weak connections compared to HCs. Source localization analyses indicated greater differences in functional connectivity in sensorimotor regions and the frontal-limbic system in PKD patients, suggesting abnormalities in motor integration related to clinical symptoms. This study highlights the potential of deep learning models based on EEG functional connectivity for accurate and cost-effective PKD diagnosis, supporting the development of portable EEG devices for clinical monitoring and diagnosis. However, the limited dataset size may affect generalizability, and further exploration of multimodal data integration and advanced deep learning architectures is necessary to enhance the robustness of PKD diagnostic models.