Comparative thermo- and piezostability study of photosynthetic core complexes containing bacteriochlorophyll a or b

IF 3.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Margus Rätsep , Liina Kangur , Kristjan Leiger , Zheng-Yu Wang-Otomo , Arvi Freiberg
{"title":"Comparative thermo- and piezostability study of photosynthetic core complexes containing bacteriochlorophyll a or b","authors":"Margus Rätsep ,&nbsp;Liina Kangur ,&nbsp;Kristjan Leiger ,&nbsp;Zheng-Yu Wang-Otomo ,&nbsp;Arvi Freiberg","doi":"10.1016/j.bbabio.2024.149527","DOIUrl":null,"url":null,"abstract":"<div><div>The resilience of biological systems to fluctuating environmental conditions is a crucial evolutionary advantage. In this study, we examine the thermo- and piezo-stability of the LH1-RC pigment-protein complex, the simplest photosynthetic unit, in three species of phototropic purple bacteria, each containing only this core complex. Among these species, <em>Blastochloris viridis</em> and <em>Blastochloris tepida</em> utilize bacteriochlorophyll <em>b</em> as the main light-harvesting pigment, while <em>Rhodospirillum rubrum</em> relies on bacteriochlorophyll <em>a</em>. Through spectroscopic analyses, we observed limited reversibility in the effects of temperature and pressure, likely due to the malleability of pigment binding sites within the light-harvesting LH1 complex. In terms of thermal robustness, LH1 complexes in a detergent environment progressively dissociate into dimeric (B820) and monomeric (B777) subunits. However, in the native membrane, degradation primarily occurs directly into B777 without the intermediate formation of B820. Interestingly, while high-pressure compression of core complexes from <em>Blastochloris viridis</em> and <em>Blastochloris tepida</em> caused significant changes in compressibility around 1.3 kbar and the formation of B777 and B820 subunits upon decompression, no such compressibility changes or pressure-induced dissociation were observed in <em>Rhodospirillum rubrum</em> complexes, even at pressures as high as 11 kbar. This study reveals significant differences in the piezo- and thermal properties of phototrophs containing either BChl <em>a</em> or BChl <em>b</em>, underscoring the critical role of structural factors in understanding the temperature- and pressure-induced denaturation phenomena in photosynthetic complexes. <em>Rhodospirillum rubrum</em>, in particular, stands out as one of the most thermodynamically stable systems among phototrophic microorganisms, capable of withstanding temperatures up to 70 °C and pressures exceeding 11 kbar.</div></div>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":"1866 1","pages":"Article 149527"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005272824004973","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The resilience of biological systems to fluctuating environmental conditions is a crucial evolutionary advantage. In this study, we examine the thermo- and piezo-stability of the LH1-RC pigment-protein complex, the simplest photosynthetic unit, in three species of phototropic purple bacteria, each containing only this core complex. Among these species, Blastochloris viridis and Blastochloris tepida utilize bacteriochlorophyll b as the main light-harvesting pigment, while Rhodospirillum rubrum relies on bacteriochlorophyll a. Through spectroscopic analyses, we observed limited reversibility in the effects of temperature and pressure, likely due to the malleability of pigment binding sites within the light-harvesting LH1 complex. In terms of thermal robustness, LH1 complexes in a detergent environment progressively dissociate into dimeric (B820) and monomeric (B777) subunits. However, in the native membrane, degradation primarily occurs directly into B777 without the intermediate formation of B820. Interestingly, while high-pressure compression of core complexes from Blastochloris viridis and Blastochloris tepida caused significant changes in compressibility around 1.3 kbar and the formation of B777 and B820 subunits upon decompression, no such compressibility changes or pressure-induced dissociation were observed in Rhodospirillum rubrum complexes, even at pressures as high as 11 kbar. This study reveals significant differences in the piezo- and thermal properties of phototrophs containing either BChl a or BChl b, underscoring the critical role of structural factors in understanding the temperature- and pressure-induced denaturation phenomena in photosynthetic complexes. Rhodospirillum rubrum, in particular, stands out as one of the most thermodynamically stable systems among phototrophic microorganisms, capable of withstanding temperatures up to 70 °C and pressures exceeding 11 kbar.
含细菌叶绿素 a 或 b 的光合作用核心复合物的热稳定性和压稳稳定性比较研究
生物系统对波动环境条件的适应能力是一项至关重要的进化优势。在这项研究中,我们考察了三种向光性紫色细菌中最简单的光合作用单元--LH1-RC色素-蛋白质复合物的热稳定性和压稳定性,每种细菌都只含有这一核心复合物。通过光谱分析,我们观察到温度和压力的影响具有有限的可逆性,这可能是由于采光 LH1 复合物中的色素结合位点具有延展性。就热稳定性而言,LH1 复合物在洗涤剂环境中会逐渐解离为二聚体(B820)和单体(B777)亚基。然而,在原生膜中,降解主要直接发生在 B777 中,而没有中间形成 B820。有趣的是,当高压压缩 Blastochloris viridis 和 Blastochloris tepida 的核心复合物时,在 1.3 千巴左右会导致可压缩性发生显著变化,并在减压时形成 B777 和 B820 亚基,而在 Rhodospirillum rubrum 复合物中,即使在高达 11 千巴的压力下,也没有观察到这种可压缩性变化或压力引起的解离。这项研究揭示了含有 BChl a 或 BChl b 的光营养体在压变和热变特性上的显著差异,强调了结构因素在理解光合复合体中温度和压力诱导的变性现象中的关键作用。特别是红柱孢霉(Rhodospirillum rubrum),它是光营养微生物中热力学最稳定的系统之一,能够承受高达 70 ℃ 的温度和超过 11 千巴的压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochimica et Biophysica Acta-Bioenergetics
Biochimica et Biophysica Acta-Bioenergetics 生物-生化与分子生物学
CiteScore
9.50
自引率
7.00%
发文量
363
审稿时长
92 days
期刊介绍: BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信