Lingjun Liu, Zhenxiang Chen, Hsien-Te Peng, Defeng Zhao, Zhizong Tan
{"title":"Analysing trunk and arm motion in volleyball jump serve: a comparison of straight line and diagonal line techniques.","authors":"Lingjun Liu, Zhenxiang Chen, Hsien-Te Peng, Defeng Zhao, Zhizong Tan","doi":"10.1080/14763141.2024.2423097","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to clarify the disparities in trunk rotation and attack arm movement and their effect on hand kinematics adjustments between straight-line (SL) and diagonal-line (DL) volleyball jump serves. Thirteen male professional volleyball players (age 21.53 ± 5.39 years, height 1.95 ± 0.06 m, body mass 86.48 ± 11.63 kg, experience 8.61 ± 3.47 years) performed SL and DL jump serve, with three-dimensional coordinate data captured using a motion capture system (200 hz). Paired t-test and statistical parametric mapping examined kinematic differences between the two serving directions. At ball contact (BC), the speed of the attack arm hand was significantly faster in DL (16.99 ± 1.36 m/s) compared to SL (16.37 ± 1.53 m/s), whereas the face angle was significantly smaller in DL (1.98 ± 11.75°) than in SL (17.60 ± 17.98°). Forward rotation angles of the pelvic and upper torso at BC were significantly greater in DL (28.47 ± 10.89°; 21.30 ± 10.25°) than in SL (18.27 ± 12.46°; 9.09 ± 14.41°). During the arm swing phase, the pelvic's forward rotation angles in DL were significantly greater than in SL at 42-72% spiking motion, and the upper torso's angles were significantly greater at 49-58% spiking motion. These findings underscore the importance of adjusting pelvic and upper torso rotations to control the hand's face angle when serving in the diagonal line.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-15"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2423097","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to clarify the disparities in trunk rotation and attack arm movement and their effect on hand kinematics adjustments between straight-line (SL) and diagonal-line (DL) volleyball jump serves. Thirteen male professional volleyball players (age 21.53 ± 5.39 years, height 1.95 ± 0.06 m, body mass 86.48 ± 11.63 kg, experience 8.61 ± 3.47 years) performed SL and DL jump serve, with three-dimensional coordinate data captured using a motion capture system (200 hz). Paired t-test and statistical parametric mapping examined kinematic differences between the two serving directions. At ball contact (BC), the speed of the attack arm hand was significantly faster in DL (16.99 ± 1.36 m/s) compared to SL (16.37 ± 1.53 m/s), whereas the face angle was significantly smaller in DL (1.98 ± 11.75°) than in SL (17.60 ± 17.98°). Forward rotation angles of the pelvic and upper torso at BC were significantly greater in DL (28.47 ± 10.89°; 21.30 ± 10.25°) than in SL (18.27 ± 12.46°; 9.09 ± 14.41°). During the arm swing phase, the pelvic's forward rotation angles in DL were significantly greater than in SL at 42-72% spiking motion, and the upper torso's angles were significantly greater at 49-58% spiking motion. These findings underscore the importance of adjusting pelvic and upper torso rotations to control the hand's face angle when serving in the diagonal line.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.