Multi-segment cooling design of a reflection mirror based on the finite-element method.

IF 2.5 3区 物理与天体物理
Zhen Wang, Yajun Tong, Fang Liu, Chaofan Xue, Limin Jin, Zhi Liu
{"title":"Multi-segment cooling design of a reflection mirror based on the finite-element method.","authors":"Zhen Wang, Yajun Tong, Fang Liu, Chaofan Xue, Limin Jin, Zhi Liu","doi":"10.1107/S1600577524009664","DOIUrl":null,"url":null,"abstract":"<p><p>High-repetition-rate free-electron lasers impose stringent requirements on thermal deformations of optics in the beamline. The Shanghai HIgh-repetition-rate XFEL aNd Extreme light facility (SHINE) experiences high average thermal power and demands wavefront preservation. To effectively manage thermal deformation in the first reflection mirrors M1, we optimized the cooling length and position of the cooling groove with numerical calculations. For example, the root mean square of the height error of the thermal deformation of the mirror at a photon energy of 900 eV was optimized, resulting in a 12.7× reduction, from 13.76 nm to 1.08 nm. This optimized design also eliminated stray light in the focus spot at the sample and resulted in a 177% increase in the peak intensity of the beam's focus spot at the sample, from 3.08 × 10<sup>5</sup> to 8.53 × 10<sup>5</sup>. The multi-segment cooling design of the mirror advanced the quality of the beam's focus spot at the sample and ensured the stable operation of SHINE under high repetition rates.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"10-16"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524009664","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-repetition-rate free-electron lasers impose stringent requirements on thermal deformations of optics in the beamline. The Shanghai HIgh-repetition-rate XFEL aNd Extreme light facility (SHINE) experiences high average thermal power and demands wavefront preservation. To effectively manage thermal deformation in the first reflection mirrors M1, we optimized the cooling length and position of the cooling groove with numerical calculations. For example, the root mean square of the height error of the thermal deformation of the mirror at a photon energy of 900 eV was optimized, resulting in a 12.7× reduction, from 13.76 nm to 1.08 nm. This optimized design also eliminated stray light in the focus spot at the sample and resulted in a 177% increase in the peak intensity of the beam's focus spot at the sample, from 3.08 × 105 to 8.53 × 105. The multi-segment cooling design of the mirror advanced the quality of the beam's focus spot at the sample and ensured the stable operation of SHINE under high repetition rates.

基于有限元法的反射镜多段冷却设计。
高重复率自由电子激光器对光束线光学器件的热变形提出了严格要求。上海高重复率 XFEL aNd 极强光设备(SHINE)的平均热功率很高,需要保持波面。为了有效控制第一反射镜 M1 的热变形,我们通过数值计算优化了冷却长度和冷却槽的位置。例如,我们优化了光子能量为 900 eV 时反射镜热变形高度误差的均方根,使其从 13.76 nm 减少到 1.08 nm,减少了 12.7 倍。这种优化设计还消除了样品聚焦光斑中的杂散光,使样品聚焦光斑的光束峰值强度增加了 177%,从 3.08 × 105 增加到 8.53 × 105。反射镜的多段冷却设计提高了样品处光束聚焦点的质量,确保了 SHINE 在高重复率下的稳定运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信